Skip to main content
Log in

New Universal Cosmic-Ray Knee near a Magnetic Rigidity of 10 TV with the NUCLEON Space Observatory

  • Astrophysics and Cosmology
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Data from the NUCLEON space observatory give a strong indication of the existence of a new universal cosmic ray “knee”, which is observed in all groups of nuclei, including heavy nuclei, near a magnetic rigidity of about 10 TV. Universality means the same position of the knee in the magnetic rigidity scale for all groups of nuclei. The knee is observed by both methods of measurement of particles energy implemented in the NUCLEON observatory—the calorimetric method and the kinematic method Kinematic Lightweight Energy Meter. This new cosmic ray knee is probably connected with the limit of acceleration of cosmic rays by some generic or nearby source of cosmic rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (Pergamon, Oxford, 1964).

    Book  Google Scholar 

  2. V. L. Ginzburg and V. S. Ptuskin, Phys. Usp. 18, 931 (1975).

    Article  ADS  Google Scholar 

  3. R. D. Blandford and J. P. Ostriker, Astrophys. J. 237, 793 (1980).

    Article  ADS  Google Scholar 

  4. R. Blandford and D. Eichler, Phys. Rep. 154, 1 (1987).

    Article  ADS  Google Scholar 

  5. W. I. Axford, in Proceedings of the 17th International Cosmic Ray Conference, 1981, Vol. 1, p.155.

  6. T. K. Gaisser, Cosmic Rays and Particle Physics (Cambridge Univ. Press, New York, 1990).

    Google Scholar 

  7. V. S. Ptuskin, Phys. Usp. 50, 534 (2007).

    Article  ADS  Google Scholar 

  8. G. F. Krymskii, Sov. Phys. Dokl. 22, 327 (1977).

    ADS  MathSciNet  Google Scholar 

  9. A. R. Bell, Mon. Not. R. Astron. Soc. 182, 147 (1978).

    Article  ADS  Google Scholar 

  10. V. I. Zatsepin, J. H. Adams, Jr., H. S. Ahn, et al. (ATIC Collab.), Bull. Russ. Acad. Sci.: Phys. 68, 1780 (2004).

    Google Scholar 

  11. A. D. Panov, J. H. Adams, Jr., H. S. Ahn, et al. (ATIC Collab.), Bull. Russ. Acad. Sci.: Phys. 73, 564 (2009).

    Google Scholar 

  12. Y. S. Yoon, H. S. Ahn, T. Anderson, et al. (CREAM Collab.), in Proceedings of the 31st International Cosmic Ray Conference, Lodz, 2009.

  13. Y. S. Yoon, H. S. Ahn, P. S. Allison, et al. (CREAM Collab.), Astrophys. J. 728, 122 (2011).

    Article  ADS  Google Scholar 

  14. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al. (PAMELA Collab.), Science (Washington, DC, U. S.) 332, 69 (2011).

    Article  ADS  Google Scholar 

  15. A. V. Karelin, S. V. Borisov, A. M. Galper, and S. A. Voronov (for PAMELA Collab.), Astrophys. Space Sci. Trans. 7, 235 (2011).

    Article  ADS  Google Scholar 

  16. M. Aguilar, D. Aisa, B. Alpat, et al. (AMS Collab.), Phys. Rev. Lett. 114, 171103 (2015).

    Article  ADS  Google Scholar 

  17. M. Aguilar, D. Aisa, B. Alpat, et al. (AMS collab.), Phys. Rev. Lett. 115, 211101 (2015).

    Article  ADS  Google Scholar 

  18. H. S. Ahn, P. Allison, M. G. Bagliesi, et al. (CREAM Collab.), Astrophys. J. Lett. 714, L89 (2010).

    Article  ADS  Google Scholar 

  19. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), J. Cosmol. Astropart. Phys. 2017 (7), 20 (2017).

    Article  Google Scholar 

  20. Y. S. Yoon, T. Anderson, A. Barrau, et al. (CREAM Collab.), Astrophys. J. 839, 5 (2017).

    Article  ADS  Google Scholar 

  21. S. Haino, K. Abe, K. Anraku, et al. (BESS Collab.), in Proceedings of the 28th International Cosmic Ray Conference, 2003, p. 1825.

  22. S. Haino, T. Sanuki, K. Abe, et al. (BESS Collab.), Phys. Lett. B 594, 35 (2004).

    Article  ADS  Google Scholar 

  23. T. Sanuki (for the BESS Collab.), Nucl. Phys. B Suppl. 145, 132 (2005).

    Article  Google Scholar 

  24. M. Boezio, V. Bonvicini, P. Schiavon, et al. (CAPRICE Collab.), Astropart. Phys. 19, 583 (2003).

    Article  ADS  Google Scholar 

  25. A. Ya. Varkovitskaya, E. A. Zamchalova, V. I. Zatsepin, T. V. Lazareva, G. P. Sazhina, and N. V. Sokol’skaya, JETP Lett. 57, 469 (1993).

    ADS  Google Scholar 

  26. V. I. Zatsepin, T. V. Lazareva, G. P. Sazhina, and N. V. Sokol’skaya, Phys. At. Nucl. 57, 645 (1994).

    Google Scholar 

  27. K. Asakimori, T. H. Burnett, M. L. Cherry, et al. (JACEE Collab.), Astrophys. J. 502, 278 (1998).

    Article  ADS  Google Scholar 

  28. M. Hareyama, V. A. Derbina, V. I. Galkin, et al. (RUN-JOB Collab.), Astrophys. J. 628, L41 (2005).

    ADS  Google Scholar 

  29. I. P. Ivanenko, V. Ya. Shestoperov, D. M. Podorozhnyj, I. D. Rapoport, G. A. Samsonov, V. A. Sobinyakov, A. N. Turundaevskij, I. M. Fateeva, L. A. Khejn, and L. O. Chikova, Izv. Akad. Nauk, Ser. Fiz. 57, 76 (1993).

    Google Scholar 

  30. V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys. 458, 1 (2006).

    Article  ADS  Google Scholar 

  31. N. A. Korotkova, D. M. Podorozhnyi, E. B. Postnikov, T. M. Roganova, L. G. Sveshnikova, and A. N. Turundaevsky, Phys. At. Nucl. 65, 582 (2002).

    Article  Google Scholar 

  32. D. M. Podorozhnyi, E. B. Postnikov, L. G. Sveshnikova, and A. N. Turundaevsky, Phys. At. Nucl. 68, 50 (2005).

    Article  Google Scholar 

  33. G. Voronin, V. M. Grebenyuk, D. E. Karmanov, N. A. Korotkova, Z. V. Krumshtein, M. M. Merkin, A. Y. Pakhomov, D. M. Podorozhnyi, A. B. Sadovskii, L. G. Sveshnikova, L. G. Tkachev, and A. N. Turundaevsky, Instrum. Exp. Tech. 50, 187 (2007).

    Article  Google Scholar 

  34. G. Voronin, V. M. Grebenyuk, D. E. Karmanov, N. A. Korotkova, Z. V. Krumshtein, M. M. Merkin, A. Y. Pakhomov, D. M. Podorozhnyi, A. B. Sadovskii, L. G. Sveshnikova, L. G. Tkachev, and A. N. Turundaevsky, Instrum. Exp. Tech. 50, 176 (2007).

    Article  Google Scholar 

  35. M. Podorozhnyi, V. L. Bulatov, N. V. Baranova, et al. (NUCLEON Collab.), Bull. Russ. Acad. Sci.: Phys. 71, 500 (2007).

    Google Scholar 

  36. V. L. Bulatov, A. V. Vlasov, N. V. Gorbunov, V. M. Grebenyuk, D. E. Karmanov, A. Y. Pakhomov, D. M. Podorozhnyi, D. A. Polkov, L. G. Tkachev, A. V. Tkachenko, S. P. Tarabrin, A. N. Turundaevskii, and S. B. Filippov, Instrum. Exp. Tech. 53, 29 (2010).

    Article  Google Scholar 

  37. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), Nuc. Instrum. Methods Phys. Res., Sect. A 770, 189 (2015).

    Article  ADS  Google Scholar 

  38. A. Panov, E. Atkin, N. Gorbunov, et al. (NUCLEON Collab.), in Proceedings of the 35th International Cosmic Ray Conference ICRC 2017.

  39. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 3rd ed. (Cambridge Univ. Press, Cambridge, 2007).

    MATH  Google Scholar 

  40. J. R. Hörandel, Astropart. Phys. 19, 193 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Panov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 1, pp. 5–13.

Supplementary materials are available for this article at DOI: 10.1134/S0021364018130015 and are accessible for authorized users. The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkin, E., Bulatov, V., Dorokhov, V. et al. New Universal Cosmic-Ray Knee near a Magnetic Rigidity of 10 TV with the NUCLEON Space Observatory. Jetp Lett. 108, 5–12 (2018). https://doi.org/10.1134/S0021364018130015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018130015

Navigation