Skip to main content
Log in

Photoinduced Migration of Ions in Optically Resonant Perovskite Nanoparticles

  • Optics And Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Organic–inorganic perovskites with a mixed anion composition are widely used in solar cells, light-emitting diodes, and nanophotonic structures. Light nanosources based on resonant perovskite nanoparticles are of particular interest. However, perovskites with such a composition demonstrate the light-induced segregation of anions, which leads to a reversible dynamic rearrangement of the optical properties of a material and photoluminescence spectra. In this work, the photoinduced process of change in optical properties in resonant hybrid perovskite nanoparticles with a mixed anion composition (MAPbBr1.5I1.5, where MA = NH3CH +3 ) has been studied. Comparison with a similar process in a perovskite thin film with a similar composition has shown that the photoinduced migration of halogen ions in a nanoparticle occurs cyclically. This is due to the competition of two processes: the concentration of ions near the boundaries of the particle and migration caused by the gradient of the density of light-generated electron–hole pairs. This effect in resonant nanoparticles makes it possible to obtain optically tunable nanoantennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  2. V. V. Klimov, Nanoplasmonics (CRC, Boca Raton, FL, 2014), p. 115.

    Book  Google Scholar 

  3. J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, ACS Nan. 10, 7761 (2016).

    Article  Google Scholar 

  4. J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, Nano Lett. 9, 4417 (2009).

    Article  ADS  Google Scholar 

  5. P. Christopher, H. Xin, and S. Linic, Nat. Chem. 3, 467 (2011).

    Article  Google Scholar 

  6. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, and A. A. Fedyanin, Nano Lett. 14, 6488 (2014).

    Article  ADS  Google Scholar 

  7. S. V. Makarov, M. I. Petrov, U. Zywietz, V. A. Milichko, D. A. Zuev, N. Lopanitsyna, and D. A. Smirnova, Nano Lett. 17, 3047 (2017).

    Article  ADS  Google Scholar 

  8. G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, Nano Lett. 17, 2945 (2017).

    Article  ADS  Google Scholar 

  9. A. Capretti, A. Lesage, and T. Gregorkiewicz, ACS Photon. 4, 2187 (2017).

    Article  Google Scholar 

  10. V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, and J. Schilling, Nano Lett. 17, 6886 (2017).

    Article  ADS  Google Scholar 

  11. S. V. Makarov, I. S. Sinev, V. A. Milichko, F. E. Komissarenko, D. A. Zuev, E. V. Ushakova, and I. V. Iorsh, Nano Lett. 18, 535 (2017).

    Article  ADS  Google Scholar 

  12. E. Y. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, and Y. S. Kivshar, Nano Lett. 18, 1185 (2018).

    Article  ADS  Google Scholar 

  13. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photon. 8, 506 (2014).

    Article  ADS  Google Scholar 

  14. W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, and S. I. Seok, Science (Washington, DC, U. S.) 356, 1376 (2017).

    Article  ADS  Google Scholar 

  15. B. R. Sutherland and E. H. Sargent, Nat. Photon. 10, 295 (2016).

    Article  ADS  Google Scholar 

  16. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, and M. B. Johnston, Science (Washington, DC, U. S.) 351, 151 (2016).

    Article  ADS  Google Scholar 

  17. G. S. Han, J. S. Yoo, F. Yu, M. L. Duff, B. K. Kang, and J. K. Lee, J. Mater. Chem. A 5, 14733 (2017).

    Article  Google Scholar 

  18. E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, and M. D. McGehee, Chem. Sci. 6, 613 (2015).

    Article  Google Scholar 

  19. I. L. Braly, R. J. Stoddard, A. Rajagopal, A. R. Uhl, J. K. Katahara, A. K. Y. Jen, and H. W. Hillhouse, ACS Energy Lett. 2, 1841 (2017).

    Article  Google Scholar 

  20. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater. 13, 897 (2014).

    Article  ADS  Google Scholar 

  21. D. J. Slotcavage, H. I. Karunadasa, and M. D. McGehee, ACS Energy Lett. 1, 1199 (2016).

    Article  Google Scholar 

  22. P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, Nanoscal. 8, 5043 (2016).

    Article  ADS  Google Scholar 

  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering by a Sphere (Wiley-VCH, Weinheim, 1983), p. 82.

    Google Scholar 

  24. A. J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S. P. Senanayak, P. M. Pearce, and T. Leijtens, ACS Energy Lett. 2, 1416 (2017).

    Article  Google Scholar 

  25. S. Meloni, T. Moehl, W. Tress, M. Franckevicius, M. Saliba, Y. H. Lee, and M. Graetzel, Nat. Commun. 7, 10334 (2016).

    Article  ADS  Google Scholar 

  26. Y. Yuan and J. Huang, Acc. Chem. Res. 49, 286 (2016).

    Article  Google Scholar 

  27. C. Li, A. Guerrero, Y. Zhong, A. Gräser, C. A. M. Luna, J. Köhler, and S. Huettner, Smal. 13, 1701711 (2017).

    Article  Google Scholar 

  28. M. L. Agiorgousis, Y. Y. Sun, H. Zeng, and S. Zhang, J. Am. Chem. Soc. 136, 14570 (2014).

    Article  Google Scholar 

  29. Z. Yang, A. Rajagopal, S. B. Jo, C. C. Chueh, S. Williams, C. C. Huang, and A. K. Y. Jen, Nano Lett. 16, 7739 (2016).

    Article  ADS  Google Scholar 

  30. M. Hu, C. Bi, Y. Yuan, Y. Bai, and J. Huang, Adv. Sci. 3, 1500301 (2016).

    Article  Google Scholar 

  31. S. Draguta, O. Sharia, S. J. Yoon, M. C. Brennan, Y. V. Morozov, J. M. Manser, and M. Kuno, Nat. Commun. 8, 200 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Gets.

Additional information

Original Russian Text © D.S. Gets, E.Yu. Tiguntseva, A.S. Berestennikov, T.G. Lyashenko, A.P. Pushkarev, S.V. Makarov, A.A. Zakhidov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 12, pp. 768–775.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gets, D.S., Tiguntseva, E.Y., Berestennikov, A.S. et al. Photoinduced Migration of Ions in Optically Resonant Perovskite Nanoparticles. Jetp Lett. 107, 742–748 (2018). https://doi.org/10.1134/S002136401812007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401812007X

Navigation