Advertisement

JETP Letters

, Volume 107, Issue 12, pp 737–741 | Cite as

Resonant Photon Drag of Dipolar Excitons

  • M. V. Boev
  • V. M. KovalevEmail author
  • I. G. Savenko
Optics And Laser Physics

Abstract

The theory of the photon drag of dipolar excitons in double-quantum-well nanostructures is presented. It is shown that the exciton-drag flux density features a resonant behavior if the photon frequency is close to some transition frequency in the discrete exciton spectrum. When the structure is irradiated with polarized light, the resonant enhancement of the drag current occurs when the photon energy coincides with the energy of an excited level of the exciton internal motion and the components of the angular momentum of internal motion in the initial and final states differ by one. The proposed effect can be used to control exciton transport in nanostructures based on a two-dimensional exciton gas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Glazov and S. D. Ganichev, Phys. Rep. 535, 101 (2014).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. V. Kolobov and J. Tominaga, Springer Ser. Mater. Sci. 239, 1 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    L. V. Butov, Superlatt. Microstruct. 108, 2 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. High, A. T. Hammack, L. V. Butov, M. Hanson, and A. C. Gossard, Opt. Lett. 32, 2466 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. High, E. E. Novitskaya, L. V. Butov, M. Hanson, and A. C. Gossard, Science (Washington, DC, U. S.) 321, 229 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, Nat. Photon. 3, 577 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    E. G. Batyev, V. M. Kovalev, and A. V. Chaplik, JETP Lett. 99, 540 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    V. M. Kovalev and A. V. Chaplik, JETP Lett. 101, 177 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    V. M. Kovalev and A. V. Chaplik, J. Exp. Theor. Phys. 122, 499 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Boev, V. M. Kovalev, and A. V. Chaplik, JETP Lett. 104, 204 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. P. Kazantsev, Sov. Phys. Usp. 21, 58 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    P. Andreakou, S. Cronenberger, D. Scalbert, A. Nalitov, N. A. Gippius, A. V. Kavokin, M. Nawrocki, J. R. Leonard, L. V. Butov, K. L. Campman, A. C. Gossard, and M. Vladimirova, Phys. Rev. 91, 125437 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Nalitov, M. Vladimirova, A. V. Kavokin, L. V. Butov, and N. A. Gippius, Phys. Rev. 89, 155309 (2014).CrossRefGoogle Scholar
  14. 14.
    E. V. Calman, M. M. Fogler, L. V. Butov, S. Hu, A. Mishchenko, and A. K. Geim, arXiv:1709.07043 (2017).Google Scholar
  15. 15.
    E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov, S. Hu, A. Mishchenko, and A. K. Geim, Appl. Phys. Lett. 108, 101901 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    M. M. Fogler, L. V. Butov, and K. S. Novoselov, Nat. Commun. 5, 4555 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    O. L. Berman and R. Ya. Kezerashvili, Phys. Rev. 96, 094502 (2017).CrossRefGoogle Scholar
  18. 18.
    I. Kylanpaa and H.-P. Komsa, Phys. Rev. 92, 205418 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. V. Boev
    • 1
    • 2
  • V. M. Kovalev
    • 1
    • 2
    Email author
  • I. G. Savenko
    • 1
    • 3
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Center for Theoretical Physics of Complex SystemsInstitute for Basic ScienceDaejeonRepublic of Korea

Personalised recommendations