Advertisement

Fractional Quantum Hall Effect in SiGe/Si/SiGe Quantum Wells in Weak Quantizing Magnetic Fields

  • V. T. Dolgopolov
  • M. Yu. Melnikov
  • A. A. Shashkin
  • S.-H. Huang
  • C. W. Liu
  • S. V. Kravchenko
Article

Abstract

We have experimentally studied the fractional quantum Hall effect in SiGe/Si/SiGe quantum wells in relatively weak magnetic fields, where the Coulomb interaction between electrons exceeds the cyclotron splitting by a factor of a few XX. Minima of the longitudinal resistance have been observed corresponding to the quantum Hall effect of composite fermions with quantum numbers p = 1, 2, 3, and 4. Minima with p = 3 disappear in magnetic fields below 7T, which may be a consequence of the intersection or even merging of the quantum levels of the composite fermions with different orientations of the pseudo-spin, i.e., those belonging to different valleys. We have also observed minima of the longitudinal resistance at filling factors ν = 4/5 and 4/11, which may be due to the formation of the second generation of the composite fermions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    T. Chakraborty and P. Pietilainen, The Fractional Quantum Hall Effect, Springer-Verlag, Berlin, N. Y. (1988).CrossRefGoogle Scholar
  3. 3.
    The Quantum Hall Effect, ed. by R. E. Prange and S. M. Girvin, Springer-Verlag, N. Y. (1990).Google Scholar
  4. 4.
    Perspectives in Quantum Hall Effects, ed. by Sankar Das Sarma and A. Pinczuk, Wiley, N. Y. (1997).Google Scholar
  5. 5.
    S. M. Girvin, The Quantum Hall Effect: Novel Excitations and Broken Symmetries, Les Houches Lecture Notes, in: Topological Aspects of Low Dimensional Systems, ed. by A. Comtet, T. Jolicoeur, S. Ouvry, and F. David, Springer-Verlag, Berlin, Les Editions de Physique, Les Ulis (2000).Google Scholar
  6. 6.
    K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    J. H. Smet, D. Weiss, K. von Klitzing, P. T. Coleridge, Z. W. Wasilewski, R. Bergmann, H. Schweizer, and A. Scherer, Phys. Rev. B 56, 3598 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    J. H. Smet, S. Jobst, K. von Klitzing, D. Weiss, W. Wegscheider, and V. Umansky, Phys. Rev. Lett. 83, 2620 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    J. H. Smet, D. Weiss, R. H. Blick, G. Lutjering, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, and G. Weimann, Phys. Rev. Lett. 77, 2272 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    K. Lai, W. Pan, D. C. Tsui, S. Lyon, M. Muhlberger, and F. Schaffler, Phys. Rev. Lett. 93, 156805 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    T. M. Lu, D. C. Tsui, C.-H. Lee, and C. W. Liu, Appl. Phys. Lett. 94, 182102 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    K. Park and J. K. Jain, Solid State Commun. 119, 291 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.-H. Huang, C. W. Liu, and S. V. Kravchenko, Appl. Phys. Lett. 106, 092102 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    W. Pan, K. W. Baldwin, K. W. West, L. N. Pfeiffer, and D. C. Tsui, Phys. Rev. B 91, 041301 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    R. R. Du, A. S. Yeh, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 75, 3926 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    R. R. Du, A. S. Yeh, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 55, R7351 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    I. V. Kukushkin, K. von Klitzing, and K. Eberl, Phys. Rev. Lett. 82, 3665 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys. Rev. Lett. 112, 186402 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, JETP Lett. 102, 36 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov, Phys. Rev. B 67, 113305 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. T. Dolgopolov
    • 1
  • M. Yu. Melnikov
    • 1
  • A. A. Shashkin
    • 1
  • S.-H. Huang
    • 2
    • 3
  • C. W. Liu
    • 2
    • 3
  • S. V. Kravchenko
    • 4
  1. 1.Institute of Solid State PhysicsChernogolovkaRussia
  2. 2.Department of Electrical Engineering and Graduate Institute of Electronics EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.National Nano Device LaboratoriesHsinchuTaiwan
  4. 4.Physics DepartmentNortheastern UniversityBostonUSA

Personalised recommendations