Advertisement

JETP Letters

, Volume 107, Issue 11, pp 728–735 | Cite as

On the Hopf-Induced Deformation of a Topological Locus

  • A. Mironov
  • A. Morozov
Scientific Summaries

Abstract

We provide a very brief review of the description of colored invariants for the Hopf link in terms of characters, which need to be taken at a peculiar deformation of the topological locus, depending on one of the two representations associated with the two components of the link. Most important, we extend the description of this locus to conjugate and, generically, to composite representations and also define the “adjoint” Schur functions emerging in the dual description.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Gukov, A. Iqbal, C. Kozcaz, and C. Vafa, Commun. Math. Phys. 298, 757 (2010)ADSCrossRefGoogle Scholar
  2. 1a.
    H. Awata and H. Kanno, Int. J. Mod. Phys. A 24, 2253 (2009); H. Awata et al., (in press).ADSCrossRefGoogle Scholar
  3. 2.
    P. K. Aravind, Y. Aharonov, and L. Vaidman, in Potentiality, Entanglement and Passion-at-a-Distance, Ed. by R. S. Cohen, M. l Horne, and J. Stachel (Springer, Netherlands, 1997), p. 53Google Scholar
  4. 2a.
    L. Kauffman and S. Lomonaco, New J. Phys. 4, 73 (2002)ADSCrossRefGoogle Scholar
  5. 2b.
    L. Kauffman and S. Lomonaco, New J. Phys. 6, 134 (2004)ADSCrossRefGoogle Scholar
  6. 2c.
    V. Balasubramanian, J. R. Fliss, R. G. Leigh, and O. Parrikar, J. High Energy Phys. 2017, 61 (2017)CrossRefGoogle Scholar
  7. 2d.
    V. Balasubramanian, M. DeCross, J. Fliss, A. Kar, R. G. Leigh, and O. Parrikar, arXiv:1801.01131Google Scholar
  8. 2e.
    D. Melnikov, A. Mironov, S. Mironov, A. Morozov, and An. Morozov, Nucl. Phys. B 926, 491 (2018).ADSCrossRefGoogle Scholar
  9. 3.
    P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, and A. Ocneanu, Bull. (New Ser.) Am. Math. Soc. 12, 239 (1985)CrossRefGoogle Scholar
  10. 3a.
    J. H. Przytycki and K. P. Traczyk, Kobe J. Math. 4, 115 (1987).Google Scholar
  11. 4.
    A. Mironov, R. Mkrtchyan, and A. Morozov, High Energy Phys. 02, 78 (2016)ADSCrossRefGoogle Scholar
  12. 4a.
    A. Mironov and A. Morozov, Phys. Lett. B 755, 47 (2016).ADSMathSciNetCrossRefGoogle Scholar
  13. 5.
    M. Rosso and V. F. R. Jones, J. Knot, Theory Ramificat. 2, 97 (1993)CrossRefGoogle Scholar
  14. 5b.
    X.-S. Lin and H. Zheng, Trans. Am. Math. Soc. 362, 1 (2010).CrossRefGoogle Scholar
  15. 6.
    A. Mironov, A. Morozov, and S. Natanzon, Theor. Math. Phys. 166, 1 (2011); J. Geom. Phys. 62, 148 (2012).CrossRefGoogle Scholar
  16. 7.
    P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, and A. Smirnov, J. High Energy Phys. 03, 021 (2013)ADSCrossRefGoogle Scholar
  17. 7a.
    A. Mironov, A. Morozov, and An. Morozov, Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (World Scientific, Singapore, 2013), p. 101Google Scholar
  18. 7b.
    A. Mironov, A. Morozov, and An. Morozov, J. High Energy Phys. 03, 034 (2012).ADSCrossRefGoogle Scholar
  19. 8.
    A. Mironov, A. Morozov, and An. Morozov, arXiv:1804.07278.Google Scholar
  20. 9.
    H. R. Morton and S. G. Lukac, J. Knot Theory Ramificat. 12, 395 (2003).CrossRefGoogle Scholar
  21. 10.
    M. Mariño, Rev. Mod. Phys. 77, 675 (2005).ADSCrossRefGoogle Scholar
  22. 11.
    M. Atiyah, Topology 29, 1 (1990).MathSciNetCrossRefGoogle Scholar
  23. 12.
    M. Mariño and C. Vafa, Contemp. Math. 310, 185 (2002)CrossRefGoogle Scholar
  24. 12a.
    M. Mariño, in Proceedings of the 70th Meeting between Physicists, Theorist and Mathematicians, Strasbourg, France, May 23–25, 2002.Google Scholar
  25. 13.
    C. Bai, J. Jiang, J. Liang, A. Mironov, A. Morozov, An. Morozov, and A. Sleptsov, Phys. Lett. B 778, 197 (2018).ADSCrossRefGoogle Scholar
  26. 14.
    M. Aganagic, T. Ekholm, L. Ng, and C. Vafa, Adv. Theor. Math. Phys. 18, 827 (2014).MathSciNetCrossRefGoogle Scholar
  27. 15.
    S. Arthamonov, A. Mironov, A. Morozov, and An. Morozov, J. High Energy Phys. 04, 156 (2014).ADSCrossRefGoogle Scholar
  28. 16.
    K. Koike, Adv. Math. 74, 57 (1989).MathSciNetCrossRefGoogle Scholar
  29. 17.
    H. Kanno, Nucl. Phys. B 745, 165 (2006).ADSCrossRefGoogle Scholar
  30. 18.
    M. Aganagic, A. Neitzke, and C. Vafa, Adv. Theor. Math. Phys. 10, 603 (2006).MathSciNetCrossRefGoogle Scholar
  31. 19.
    D. J. Gross and W. Taylor, Nucl. Phys. B 400, 181 (1993).ADSCrossRefGoogle Scholar
  32. 20.
    M. Mariño, Commun. Math. Phys. 298, 613 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Theoretical and Experimental PhysicsNational Research Center Kurchatov InstituteMoscowRussia
  3. 3.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations