JETP Letters

, Volume 107, Issue 11, pp 718–724 | Cite as

Microscopic Description of the Thermodynamics of a Lipid Membrane at a Liquid–Gel Phase Transition

  • B. Kheyfets
  • T. Galimzyanov
  • S. Mukhin


A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid–gel phase transition. We demonstrate that liquid–gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase in lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes, Phys. Lett. A 47, 123 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    S. Marcelja, Biochim. Biophys. Acta 367, 165 (1974).CrossRefGoogle Scholar
  3. 3.
    J. F. Nagle, J. Chem. Phys. 58, 252 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    H. L. Scott and W. H. Cheng, Biophys. J. 28, 117 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    A. Caille, A. Rapini, M. J. Zuckermann, A. Cros, and S. Doniach, Can. J. Phys. 56, 348 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    C. Huang and S. Li, Biochim. Biophys. Acta 1422, 273 (1999).CrossRefGoogle Scholar
  7. 7.
    E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    S. Leekumjorn and A. K. Sum, Biochim. Biophys. Acta 1768, 354 (2007).CrossRefGoogle Scholar
  9. 9.
    J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000).CrossRefGoogle Scholar
  10. 10.
    D. Needham and E. Evans, Biochemistry 27, 8261 (1988).CrossRefGoogle Scholar
  11. 11.
    B. S. Lee, S. A. Mabry, A. Jonas, and J. Jonas, Chem. Phys. Lipids 78, 103 (1995).CrossRefGoogle Scholar
  12. 12.
    J. F. Nagle and D. A. Wilkinson, Biophys. J. 23, 159 (1978).CrossRefGoogle Scholar
  13. 13.
    S. J. Marrink, J. Risselada, and A. E. Mark, Chem. Phys. Lipids 135, 223 (2005).CrossRefGoogle Scholar
  14. 14.
    S. W. Chiu, E. Jakobsson, J. Mashl, and L. Scott, Biophys. J. 83, 1842 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    D. A. Brown and E. London, J. Biolog. Chem. 275, 17221 (2000).CrossRefGoogle Scholar
  16. 16.
    F. M. Goni, Biochim. Biophys. Acta 1838, 1467 (2014).CrossRefGoogle Scholar
  17. 17.
    V. S. Markin and B. Martinac, Biophys. J. 60, 1120 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    S. Sukharev, S. R. Durell, and H. R. Guy, Biophys. J. 81, 917 (2001).CrossRefGoogle Scholar
  19. 19.
    K. Simons and E. Ikonen, Nature (London, U.K.) 387 (6633), 569 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic, Burlington, MA, 2011), p. 537.Google Scholar
  21. 21.
    D. Boal, Mechanics of the Cell, 2nd ed. (Cambridge Univ. Press, Cambridge, UK, New York, 2012), p. 259.CrossRefGoogle Scholar
  22. 22.
    S. I. Mukhin and S. Baoukina, Phys. Rev. E 71, 061918 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    S. I. Mukhin and B. B. Kheyfets, Phys. Rev. E 82, 051901 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    T. W. Burkhardt, J. Phys. A: Math. Gen. 28, L629 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux, and W. M. Gelbart, Phys. Rev. Lett. 60, 1966 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    I. Szleifer, D. Kramer, A. Ben-Shaul, W. M. Gelbart, and S. A. Safran, J. Chem. Phys. 92, 6800 (1990).ADSCrossRefGoogle Scholar
  27. 27.
    E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    L. S. Vermeer, B. L. de Groot, V. Reat, A. Milon, and J. Czaplicki, Eur. Biophys. J. 36, 919 (2007).CrossRefGoogle Scholar
  29. 29.
    B. Kheyfets, T. Galimzyanov, A. Drozdova, and S. Mukhin, Phys. Rev. E 94, 042415 (2016).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    B. Kheyfets, T. Galimzyanov, and S. Mukhin, arXiv: 1804.03709 (2018).Google Scholar
  31. 31.
    L. Salem, J. Chem. Phys. 37, 2100 (1962).ADSCrossRefGoogle Scholar
  32. 32.
    S. I. Mukhin and B. B. Kheyfets, JETP Lett. 99, 358 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    Z. V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, Biophys. J. 86, 3783 (2004).CrossRefGoogle Scholar
  34. 34.
    M. R. Morrow, J. P. Whitehead, and D. Lu, Biophys. J. 63, 18 (1992).ADSCrossRefGoogle Scholar
  35. 35.
    V. K. Sharma, E. Mamontov, D. B. Anunciado, H. O’Neill, and V. Urban, J. Phys. Chem. B 119, 4460 (2015).CrossRefGoogle Scholar
  36. 36.
    D. Marsh, Biochim. Biophys. Acta 1286, 183 (1996).CrossRefGoogle Scholar
  37. 37.
    R. N. Lewis, N. Mak, and R. N. McElhaney, Biochemistry 26, 6118 (1987).CrossRefGoogle Scholar
  38. 38.
    T. G. Burke, A. S. Rudolph, R. R. Price, J. P. Sheridan, A. W. Dalziel, A. Singh, and P. E. Schoen, Chem. Phys. Lipids 48, 215 (1988).CrossRefGoogle Scholar
  39. 39.
    G. Lipka, B. Z. Chowdhry, and J. M. Sturtevant, J. Phys. Chem. 88, 5401 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations