Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition



A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes, Phys. Lett. A 47(2), 123 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    S. Marcelja, Biochimica Et Biophysica Acta 367(2), 165 (1974).CrossRefGoogle Scholar
  3. 3.
    J. F. Nagle, J. Chem. Phys. 58(1), 252 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    H. L. Scott and W.H. Cheng, Biophys. J. 28(1), 117 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    A. Caille, A. Rapini, M. J. Zuckermann, A. Cros, and S. Doniach, Can. J. Phys. 56(3), 348 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    C. Huang and S. Li, Biochimica et Biophysica Acta (BBA)–Reviews on Biomembranes 1422(3), 273 (1999).CrossRefGoogle Scholar
  7. 7.
    E. I. Kats, V.V. Lebedev, and A.R. Muratov, Phys. Rep. 228(1), 1 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    S. Leekumjorn and A.K. Sum, Biochimica et Biophysica Acta (BBA)–Biomembranes 1768(2), 354 (2007).CrossRefGoogle Scholar
  9. 9.
    J. F. Nagle and S. Tristram-Nagle, Biochimica et Biophysica Acta (BBA)–Reviews on Biomembranes 1469(3), 159 (2000).CrossRefGoogle Scholar
  10. 10.
    D. Needham and E. Evans, Biochemistry 27(21), 8261 (1988).CrossRefGoogle Scholar
  11. 11.
    B. S. Lee, S. A. Mabry, A. Jonas, and J. Jonas, Chemistry and Physics of Lipids 78(2), 103 (1995).CrossRefGoogle Scholar
  12. 12.
    J. F. Nagle and D.A. Wilkinson, Biophys. J. 23(2), 159 (1978).CrossRefGoogle Scholar
  13. 13.
    S. J. Marrink, J. Risselada, and A.E. Mark, Chemistry and Physics of Lipids 135(2), 223 (2005).CrossRefGoogle Scholar
  14. 14.
    S.W. Chiu, E. Jakobsson, J. Mashl, and L. Scott, Biophys. J. 83(4), 1842 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Brown and E. London, J. Biolog. Chem. 275(23), 17221 (2000).CrossRefGoogle Scholar
  16. 16.
    F. M. Goni, Biochimica et Biophysica Acta (BBA)–Biomembranes 1838(6), 1467 (2014).CrossRefGoogle Scholar
  17. 17.
    V. S. Markin and B. Martinac, Biophys. J. 60(5), 1120 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    S. Sukharev, S. R. Durell, and H.R. Guy, Biophys. J. 81(2), 917 (2001).CrossRefGoogle Scholar
  19. 19.
    K. Simons and E. Ikonen, Nature 387(6633), 569 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    J.N. Israelachvili, Intermolecular and Surface Forces, 3-rd ed., MA, Academic Press, Burlington (2011), p. 537.Google Scholar
  21. 21.
    D. Boal, Mechanics of the Cell, 2-nd ed., Cambridge, UK; New York. Cambridge University Press (2012), p. 259.CrossRefGoogle Scholar
  22. 22.
    S. I. Mukhin and S. Baoukina, Phys. Rev. E 71(6), 061918 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    S. I. Mukhin and B.B. Kheyfets, Phys. Rev. E 82(5), 051901 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    T. W. Burkhardt, J. Phys. A: Mathematical and General 28(24), L629 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux, and W.M. Gelbart, Phys. Rev. Lett. 60(19), 1966 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    I. Szleifer, D. Kramer, A. Ben-Shaul, W.M. Gelbart, and S.A. Safran, J. Chem. Phys. 92(11), 6800 (1990).ADSCrossRefGoogle Scholar
  27. 27.
    E. Lindahl and O. Edholm, Biophysical J. 79(1), 426 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    L. S. Vermeer, B. L. de Groot, V. Reat, A. Milon, and J. Czaplicki, Eur. Biophys. J. 36(8), 919 (2007).CrossRefGoogle Scholar
  29. 29.
    B. Kheyfets, T. Galimzyanov, A. Drozdova, and S. Mukhin, Phys. Rev. E 94(4), 042415 (2016).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    B. Kheyfets, T. Galimzyanov, and S. Mukhin, arXiv: 1804.03709 (2018).Google Scholar
  31. 31.
    L. Salem, J. Chem. Phys. 37(9), 2100 (1962).ADSCrossRefGoogle Scholar
  32. 32.
    S. I. Mukhin and B.B. Kheyfets, JETP Lett. 99(6), 358 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    Z.V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, Biophys. J. 86(6), 3783 (2004).CrossRefGoogle Scholar
  34. 34.
    M.R. Morrow, J.P. Whitehead, and D. Lu, Biophys. J. 63(1), 18 (1992).ADSCrossRefGoogle Scholar
  35. 35.
    V. K. Sharma, E. Mamontov, D.B. Anunciado, H. O’Neill, and V. Urban, J. Phys. Chem. B 119(12), 4460 (2015).CrossRefGoogle Scholar
  36. 36.
    D. Marsh, Biochimica et Biophysica Acta 1286(3), 183 (1996).CrossRefGoogle Scholar
  37. 37.
    R.N. Lewis, N. Mak, and R.N. McElhaney, Biochemistry 26(19), 6118 (1987).CrossRefGoogle Scholar
  38. 38.
    T.G. Burke, A. S. Rudolph, R. R. Price, J. P. Sheridan, A. W. Dalziel, A. Singh, and P.E. Schoen, Chemistry and Physics of Lipids 48(3), 215 (1988).CrossRefGoogle Scholar
  39. 39.
    G. Lipka, B. Z. Chowdhry, and J.M. Sturtevant, J. Phys. Chem. 88(22), 5401 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National University of Science and Technology “MISIS”MoscowRussia
  2. 2.A.N.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations