Advertisement

JETP Letters

, Volume 107, Issue 10, pp 646–650 | Cite as

Rearrangement of the Structure of Paratellurite Crystals in a Near-Surface Layer Caused by the Migration of Charge Carriers in an External Electric Field

  • A. G. KulikovEmail author
  • A. E. Blagov
  • N. V. Marchenkov
  • V. A. Lomonov
  • A. V. Vinogradov
  • Yu. V. Pisarevsky
  • M. V. Kovalchuk
Condensed Matter

Abstract

The process of formation of surface structures in a paratellurite crystal (α-TeO2) in an external electric field has been studied by in situ X-ray diffraction (XRD) measurements. This process is reversible and its dynamics (duration of tens of minutes) corresponds to the formation of a screening layer near the insulator–metal interface owing to the counter migration of oxygen ions and vacancies in the external electric field. The formation of domains has been observed in the experiment as the broadening and splitting of the XRD curve and is explained by mechanical stresses that appear in the high electric field near the surface in view of the piezoelectric effect and are responsible for a ferroelectric α–β phase transition. A change in the lattice parameter near the anode (surface of the crystal with a positive external charge) has been detected simultaneously. This change is due to the local rearrangement of the crystal structure because of the inflow of oxygen ions in this region and outflow of oxygen vacancies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hanzig, M. Zschornak, F. Hanzig, E. Mehner, and H. Stocker, Phys. Rev.. 88, 024104 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Hanzig, M. Zschornak, E. Mehner, F. Hanzig, W. Münchgesang, T. Leisegang, H. Stöcker, and D. C. Meyer, J. Phys.: Condens. Matte. 28, 225001 (2016).ADSGoogle Scholar
  3. 3.
    B. Khanbabaee, E. Mehner, C. Richter, J. Hanzig, M. Zschornak, U. Pietsch, H. Stöcker, T. Leisegang, D. C. Meyer, and S. Gorfman, Appl. Phys. Lett. 109, 222901 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    M. V. Kovalchuk, A. E. Blagov, A. G. Kulikov, N. V. Marchenkov, and Yu. V. Pisarevsky, Crystallogr. Rep. 59, 862 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    A. Mori, H. Masuda, K. Shikano, and M. Shimizu, J. Light. Technol. 21, 1300 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    P. A. Thomas, J. Phys. C: Solid State Phys. 21, 4611 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    P. S. Peercy and I. J. Fritz, Phys. Rev. Lett. 32, 466 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    T. G. Worlton and R. A. Beyerlein, Phys. Rev.. 12, 1899 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    J. C. Champarnaud-Mesjard, S. Blanchandin, P. Thomas, A. P. Mirgorodsky, T. Merle-Mejean, and B. Frit, J. Phys. Chem. Solid. 61, 1499 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    M. Ceriotti, F. Pietrucci, and M. Bernasconi, Phys. Rev.. 73, 104304 (2006).CrossRefGoogle Scholar
  11. 11.
    A. E. Blagov, N. V. Marchenkov, Yu. V. Pisarevsky, P. A. Prosekov, and M. V. Kovalchuk, Crystallogr. Rep. 58, 49 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. E. Blagov, A. G. Kulikov, N. V. Marchenkov, Y. V. Pisarevsky, and M. V. Kovalchuk, Exp. Tech. 41, 517 (2017).CrossRefGoogle Scholar
  13. 13.
    A. G. Kulikov, N. V. Marchenkov, A. E. Blagov, K. G. Kozhemyakin, M. Yu. Nasonov, S. S. Pashkov, Yu. V. Pisarevskii, and G. N. Cherpukhina, Acoust. Phys. 62, 694 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ohmachi and N. Uchida, J. Appl. Phys. 41, 2307 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    H. Jain and A. S. Nowick, J. Phys. Status Solid. 67, 701 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    E. Hartmann and L. Kovacs, J. Phys. Status Solid. 59, 59 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. G. Kulikov
    • 1
    • 2
    Email author
  • A. E. Blagov
    • 1
    • 2
  • N. V. Marchenkov
    • 1
    • 2
  • V. A. Lomonov
    • 1
  • A. V. Vinogradov
    • 1
  • Yu. V. Pisarevsky
    • 1
    • 2
  • M. V. Kovalchuk
    • 1
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Research Center Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations