Skip to main content
Log in

Weak Universality in the Disordered Two-Dimensional Antiferromagnetic Potts Model on a Triangular Lattice

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The critical behavior of the disordered two-dimensional antiferromagnetic Potts model with the number of spin states q= 3 on a triangular lattice with disorder in the form of nonmagnetic impurities is studied by the Monte Carlo method. The critical exponents for the susceptibility γ, magnetization β, specific heat α, and correlation radius ν are calculated in the framework of the finite-size scaling theory at spin concentrations p = 0.90, 0.80, 0.70, and 0.65. It is found that the critical exponents increase with the degree of disorder, whereas the ratios and do not change, thus holding the scaling equality \(\frac{{2\beta }}{\nu } + \frac{\gamma }{\nu } = d\). Such behavior of the critical exponents is related to the weak universality of the critical behavior characteristic of disordered systems. All results are obtained using independent Monte Carlo algorithms, such as the Metropolis and Wolff algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Dotsenko, Phys. Usp. 38, 457 (1995).

    Article  ADS  Google Scholar 

  2. R. Fol’k, Yu. Golovach, and T. Yavorskii, Phys. Usp. 46, 169 (2003).

    Article  ADS  Google Scholar 

  3. A. K. Murtazaev, Phys. Usp. 49, 1092 (2006).

    Article  ADS  Google Scholar 

  4. A. B. Harris, J. Phys.. 7, 1671 (1974).

    ADS  Google Scholar 

  5. Vik. Dotsenko and Vl. Dotsenko, Adv. Phys. 32, 129 (1983).

    Article  ADS  Google Scholar 

  6. Y. Imry and M. Wortis, Phys. Rev.. 19, 3580 (1979).

    Article  ADS  Google Scholar 

  7. M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  8. C. R. Vasquez, R. V. Paredes, A. Hasmy, and R. Jullien, Phys. Rev. Lett. 90, 170602 (2003).

    Article  ADS  Google Scholar 

  9. K. Hui and A. N. Berker, Phys. Rev. Lett. 62, 2507 (1989).

    Article  ADS  Google Scholar 

  10. J. Q. Yin, B. Zheng, V. V. Prudnikov, and S. Trimper, Eur. Phys. J.. 49, 195 (2006).

    Article  ADS  Google Scholar 

  11. A. K. Murtazaev and A. B. Babaev, JETP Lett. 99, 535 (2014).

    Article  ADS  Google Scholar 

  12. A. B. Babaev and A. K. Murtazaev, JETP Lett. 105, 384 (2017).

    Article  ADS  Google Scholar 

  13. H. G. Ballesteros, L. A. Fernández, V. Martin-Mayor, A. Munoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A: Math. Gen. 30, 8379 (1997).

    Article  ADS  Google Scholar 

  14. U. L. Fulco, F. D. Nobre, L. R. da Silva, and L. S. Lucena, Phys. A (Amsterdam, Neth.. 297, 131 (2001).

    Article  ADS  Google Scholar 

  15. J.-K. Kim, Phys. Rev.. 53, 3388 (1996).

    Article  ADS  Google Scholar 

  16. L. N. Shchur and O. A. Vasilyev, Phys. Rev.. 65, 016107 (2001).

    Google Scholar 

  17. G. S. Iannacchione, G. P. Crawford, S. Zumer, J. W. Doane, and D. Finotello, Phys. Rev. Lett. 71, 2595 (1993).

    Article  ADS  Google Scholar 

  18. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

    Article  ADS  Google Scholar 

  19. J. Adler, A. Brandt, W. Janke, and S. Shmulyian, J. Phys. A: Math. Gen. 28, 5117 (1995).

    Article  ADS  Google Scholar 

  20. R. Paredes V. and J. Valbuena, Phys. Rev.. 59, 6275 (1999).

    Google Scholar 

  21. C. Chatelain and B. Berche, Phys. Rev. Lett. 80, 1670 (1998).

    Article  ADS  Google Scholar 

  22. A. K. Murtazaev, A. B. Babaev, and G. Ya. Ataeva, Phys. Solid Stat. 57, 1436 (2015).

    Article  ADS  Google Scholar 

  23. A. K. Murtazaev, A. B. Babaev, and G. Y. Ataeva, J. Magn. Magn. Mater. 440, 101 (2017).

    Article  ADS  Google Scholar 

  24. C. Vasquez and R. Paredes, Condens. Matter Phys. 9, 305 (2006).

    Article  Google Scholar 

  25. C. J. Q. Yin, B. Zheng, and S. Trimper, Phys. Rev.. 72, 036120 (2005).

    Google Scholar 

  26. C. Chatelain, P.-E. Berche, B. Berche, and W. Janke, Nucl. Phys.. 106, 899 (2002).

    Google Scholar 

  27. U. Wolff, Phys. Lett. 62, 361 (1989).

    Article  Google Scholar 

  28. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  29. A. B. Babaev and A. K. Murtazaev, Low Temp. Phys. 41, 608 (2015).

    Article  ADS  Google Scholar 

  30. A. K. Murtazaev, A. B. Babaev, and G. Ya. Aznaurova, Phys. Solid Stat. 50, 733 (2008).

    Article  ADS  Google Scholar 

  31. A. B. Babaev, A. K. Murtazaev, and R. A. Murtazaliev, Solid State Phenom. 233–234, 79 (2015).

    Article  Google Scholar 

  32. A. K. Murtazaev, A. B. Babaev, and G. Ya. Ataeva, Phys. Solid Stat. 59, 141 (2017).

    Article  ADS  Google Scholar 

  33. K. Eichhorn and K. Binder, J. Phys.: Condens. Matte. 8, 5209 (1996).

    ADS  Google Scholar 

  34. N. A. Alves, B. A. Berg, and R. Villanova, Phys. Rev.. 41, 383 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  35. M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).

    Article  ADS  Google Scholar 

  36. D. Loison, Phys. Lett.. 257, 83 (1999).

    Article  Google Scholar 

  37. P. Peczac, A. M. Ferrenberg, and D. P. Landau, Phys. Rev.. 43, 6087 (1991).

    Article  ADS  Google Scholar 

  38. O. A. Vasilyev and L. N. Shchur, J. Exp. Theor. Phys. 90, 964 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Babaev.

Additional information

Original Russian Text © A.B. Babaev, A.K. Murtazaev, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 10, pp. 656–661.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaev, A.B., Murtazaev, A.K. Weak Universality in the Disordered Two-Dimensional Antiferromagnetic Potts Model on a Triangular Lattice. Jetp Lett. 107, 624–628 (2018). https://doi.org/10.1134/S0021364018100053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018100053

Navigation