Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy



In this letter we describe the observation of a magnetic field dependent electronic gap, suggestive of local superconductivity, in the point-contact spectrum of micro-crystalline graphite. Magnetic field dependent point-contact spectroscopy was carried out at a temperature of 1.8K using an etched aluminium tip. At zero field a gap structure in the differential conductance is observed, showing a gap of Δ = 4.2 meV. On applying magnetic fields of up to 500mT, this gap gradually closes, following the theoretical prediction by Ginzburg and Landau for a fully flux-penetrated superconductor. By applying BCS-theory, we infer a critical superconducting temperature of 14K.


  1. 1.
    for the most recent review see P.D. Esquinazi et al., Quantum Stud.: Math. Found. 5, 41 (2018) or arXiv 1709.00259 and references therein.MathSciNetGoogle Scholar
  2. 2.
    G. E. Volovik, JETP Lett. (online first) 107, (2018): Scholar
  3. 3.
    N. Kopnin, T. Heikkilae, and G.E. Volovik, Phys. Rev. B 83, 220503(R) (2011).Google Scholar
  4. 4.
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices., Nature, (2018).Google Scholar
  5. 5.
    I.K. Yanson, I.O. Kulik, and A. G. Batrak, J. Low Temp. Phys. 42(5–6), 527 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    A.G.M. Jansen, A.P. van Gelder, and P. Wyder, J. Phys. C: Solid St. Phys. 13, 6073 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    W.-C. Lee, W. Park, H. Arham, L. Greene, and P. Phillips, PNAS 112(3), 651 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    Product of GrafTech Internat. Adv. Elec. Tech., Scholar
  9. 9.
    F. Arnold, Experimental Study of Strongly Correlated Fermion Systems under Extreme Conditions: Two-Dimensional 3He at Ultra-Low Temperatures and Graphite in the Magnetic Ultra-Quantum Limit, Thesis, Royal Holloway, University of London (2015).Google Scholar
  10. 10.
    J.W. McClure, Phys. Rev. 108(3), 612 (1957).ADSCrossRefGoogle Scholar
  11. 11.
    G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    D. H. Douglass Jr., Phys. Rev. Lett. 6(7), 346 (1961).ADSCrossRefGoogle Scholar
  13. 13.
    R. Meservey and D.H. Douglas Jr., Phys. Rev. 135(1A), A24 (1964).ADSCrossRefGoogle Scholar
  14. 14.
    F. London, Phys. Rev. 74(4), 562 (1948).ADSCrossRefGoogle Scholar
  15. 15.
    A. Andreev, Sov. Phys. JETP 19(5), 1228 (1964).Google Scholar
  16. 16.
    R. Cohen and B. Abeles, Phys. Rev. 168(2), 444 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    C. Black, D. Ralph, and M. Tinkham, Phys. Rev. Lett. 76(4), 688 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    N. Court, A. Ferguson, and R. Clark, Supercond. Sci. Technol. 21, 015013 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Royal HollowayUniversity of LondonEghamUnited Kingdom

Personalised recommendations