Advertisement

JETP Letters

, Volume 107, Issue 9, pp 527–531 | Cite as

Anisotropy of Thermal Dileptons

  • V. V. Goloviznin
  • A. M. Snigirev
  • G. M. Zinovjev
Fields, Particles, and Nuclei
  • 29 Downloads

Abstract

The meaningful specific anisotropy in the angle distribution of leptons with respect to the three-momentum of pair is predicted as a feasibility signature of synchrotron-like mechanism resulting from the quarks interacting with a collective confining color field in the heavy ion collisions. The lepton pair production rate and the spectrum of pair invariant mass are presented for this new dilepton source that is apparently not taken into consideration in the available phenomenological estimates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Jacak and B. Mueller, Science (Washington, DC, U.S.) 337, 310 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    J. Schukraft, arXiv:1705.02646 [nucl-ex].Google Scholar
  3. 3.
    E. L. Feinberg, Nuovo Cimento A 34, 391 (1976).CrossRefGoogle Scholar
  4. 4.
    E. V. Shuryak, Sov. J. Nucl. Phys. 28, 408 (1978).Google Scholar
  5. 5.
    C. Shen, Nucl. Phys. A 956, 184 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    J.-F. Paquet, J. Phys.: Conf. Ser. 832 (1), 012035 (2017).Google Scholar
  7. 7.
    A. Adare et al. (PHENIX Collab.), Phys. Rev. Lett. 109, 122302 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. Adare et al. (PHENIX Collab.), Phys. Rev. Lett. 104, 132301 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S. Campbell, in Proceedings of the 26th Conference on Quark Matter QM2017, Chicago, Feb. 5–11, 2017; arXiv:1704.06307 [nucl-ex].Google Scholar
  10. 10.
    G. Vujanovic, J.-F. Paquet, S. Ryu, C. Shen, G. Denicol, S. Jeon, C. Gale, and U. Heinz, in Proceedings of the 26th Conference on Quark Matter QM2017, Chicago, Feb. 5–11, 2017; arXiv:1704. 04687[nucl-th].Google Scholar
  11. 11.
    R. Chatterjee, E. S. Frodermann, U. W. Heinz, and D. K. Srivastava, Phys. Rev. Lett. 96, 202302 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    C. Gale, Y. Hitaka, S. Jeon, S. Lin, J.-F. Paquet, R. Pisarski, D. Satow, V. Skokov, and G. Vujanovic, Phys. Rev. Lett. 114, 072301 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    R. Pisarski, Phys. Rev. D 74, 121703 (2006).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Dumitru, Y. Guo, T. Hidaka, C. P. K. Altes, and R. Pisarski, Phys. Rev. D 86, 105017 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    M. Chiu, T. K. Hemmick, V. Khachatryan, A. Leonidov, J. Liao, and L. McLerran, Nucl. Phys. A 900, 16 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    R. Chatterjee, D. K. Srivastava, U. W. Heinz, and C. Gale, Phys. Rev. C 75, 054909 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    H. van Hees, C. Gale, and R. Rapp, Phys. Rev. C 84, 054906 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    G. Basar, D. Kharzeev, and V. Skokov, Phys. Rev. Lett. 109, 202303 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    A. Bzdak and V. Skokov, Phys. Rev. Lett. 110, 192301 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    F.-M. Liu and S.-X. Liu, Phys. Rev. C 89, 034906 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    O. Linnyk, V. P. Konchakovski, W. Cassing, and E. L. Bratkovskaya, Phys. Rev. C 88, 034904 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    B. Zakharov, Eur. Phys. J. C 76, 609 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    B. Zakharov, JETP Lett. 106, 283 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Goloviznin, A. M. Snigirev, and G. M. Zinovjev, JETP Lett. 98, 61 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Goloviznin, G. M. Zinov’ev, and A. M. Snigirev, Sov. J. Nucl. Phys. 47, 561 (1988).Google Scholar
  26. 26.
    V. V. Goloviznin, G. M. Zinov’ev, and A. M. Snigirev, Sov. J. Nucl. Phys. 48, 1099 (1988).Google Scholar
  27. 27.
    V. V. Goloviznin, A. M. Snigirev, and G. M. Zinovjev, Z. Phys. C 38, 255 (1988).ADSCrossRefGoogle Scholar
  28. 28.
    G. Baym, T. Hatsuda, and M. Strickland, Phys. Rev. C 95, 044907 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    G. Baym and T. Hatsuda, Prog. Theor. Exp. Phys., No. 3, 031DO1 (2015).Google Scholar
  30. 30.
    A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D 20, 179 (1979).ADSCrossRefGoogle Scholar
  31. 31.
    B. Banerjee, N. Glendenning, and T. Matsui, Phys. Lett. B 127, 453 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    V. V. Goloviznin, A. M. Snigirev, and G. M. Zinovjev, Phys. Lett. B 211, 167 (1988).ADSCrossRefGoogle Scholar
  33. 33.
    V. V. Goloviznin, A. M. Snigirev, and G. M. Zinovjev, Z. Phys. C 45, 335 (1989).CrossRefGoogle Scholar
  34. 34.
    V. G. Zhulego, V. N. Rodionov, and A. I. Studenikin, Sov. J. Nucl. Phys. 36, 306 (1982).Google Scholar
  35. 35.
    K. Kajantie, J. Kapusta, L. McLerran, and A. Mekjian, Phys. Rev. D 34, 2746 (1986).ADSCrossRefGoogle Scholar
  36. 36.
    T. Altherr and P. V. Ruuskanen, Nucl. Phys. B 380, 377 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    P. K. Roy, D. Pal, S. Sarkar, D. K. Srivastava, and B. Sinha, Phys. Rev. C 53, 2364 (1996).ADSCrossRefGoogle Scholar
  38. 38.
    J. D. Bjorken, Phys. Rev. D 27, 140 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Goloviznin
    • 1
  • A. M. Snigirev
    • 2
    • 3
  • G. M. Zinovjev
    • 1
  1. 1.Bogolyubov Institute for Theoretical PhysicsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow regionRussia

Personalised recommendations