Advertisement

JETP Letters

, Volume 107, Issue 8, pp 506–511 | Cite as

Symmetry of Pulsating Ratchets

  • V. M. Rozenbaum
  • I. V. Shapochkina
  • Y. Teranishi
  • L. I. Trakhtenberg
Miscellaneous
  • 24 Downloads

Abstract

Using an exact expression for the average velocity of inertialess motion of pulsating ratchets, a simple proof is given for the recently discovered hidden space-time symmetry of Cubero–Renzoni (D. Cubero, F. Renzoni, 2016). The conditions are revealed for the absence of the ratchet effect in systems with potential energies described by products of periodic functions of coordinate and time possessing the symmetry of the main types. In particular, it is shown that the ratchet effect is absent for the time dependence of the universal symmetry type (which combines three standard symmetries), and this restriction is removed when inertia is taken into account, unless the coordinate dependence of the potential energy is related to symmetric or antisymmetric functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Astumian and M. Bier, Phys. Rev. Lett. 72, 1766 (1994).CrossRefADSGoogle Scholar
  2. 2.
    F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997).CrossRefADSGoogle Scholar
  3. 3.
    Y. Okada and N. Hirokawa, Science (Washington, DC, U. S.) 283, 1152 (1999).CrossRefADSGoogle Scholar
  4. 4.
    J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature (London, U.K.) 370, 446 (1994).CrossRefADSGoogle Scholar
  5. 5.
    C. C. de Souza Silva, J. van de Vondel, M. Morelle, and V. V. Moshchalkov, Nature (London, U.K.) 440, 651 (2006).CrossRefADSGoogle Scholar
  6. 6.
    R. Gommers, S. Bergamini, and F. Renzoni, Phys. Rev. Lett. 95, 073003 (2005).CrossRefADSGoogle Scholar
  7. 7.
    O. Kedem, B. Lau, and E. A. Weiss, Nano Lett. 17, 5848 (2017).CrossRefADSGoogle Scholar
  8. 8.
    P. Reimann, Phys. Rev. Lett. 86, 4992 (2001).CrossRefADSGoogle Scholar
  9. 9.
    P. Reimann, Phys. Rep. 361, 57 (2002).MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    S. Denisov, S. Flach, and P. Hänggi, Phys. Rep. 538, 77 (2014).MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    D. Cubero and F. Renzoni, Phys. Rev. Lett. 116, 010602 (2016).CrossRefADSGoogle Scholar
  12. 12.
    V. M. Rozenbaum, JETP 110, 653 (2010).CrossRefADSGoogle Scholar
  13. 13.
    V. M. Rozenbaum and I. V. Shapochkina, JETP Lett. 92, 120 (2010).CrossRefADSGoogle Scholar
  14. 14.
    V. M. Rozenbaum, T. Ye. Korochkova, A. A. Chernova, and M. L. Dekhtyar, Phys. Rev. E 83, 051120 (2011).CrossRefADSGoogle Scholar
  15. 15.
    V. M. Rozenbaum, Y. A. Makhnovskii, I. V. Shapochkina, S.-Y. Sheu, D.-Y. Yang, and S. H. Lin, Phys. Rev. E 85, 041116 (2012).CrossRefADSGoogle Scholar
  16. 16.
    V. M. Rozenbaum, Yu. A. Makhnovskii, I. V. Shapochkina, S.-Y. Sheu, D.-Y. Yang, and S. H. Lin, Phys. Rev. E 89, 052131 (2014).CrossRefADSGoogle Scholar
  17. 17.
    H. Riskin, The Fokker–Planck Equation. Methods of Solution and Applications (Springer, Berlin, 1989).Google Scholar
  18. 18.
    D. Cubero, personal communication, Dec. 31, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. M. Rozenbaum
    • 1
    • 2
    • 3
  • I. V. Shapochkina
    • 1
    • 2
    • 4
  • Y. Teranishi
    • 1
  • L. I. Trakhtenberg
    • 5
    • 6
  1. 1.Institute of PhysicsNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Institute of Atomic and Molecular SciencesAcademia SinicaTaipeiTaiwan
  3. 3.Chuiko Institute of Surface ChemistryNational Academy of Sciences of UkraineKievUkraine
  4. 4.Department of PhysicsBelarusian State UniversityMinskBelarus
  5. 5.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  6. 6.State Scientific Center of Russian Federation Karpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations