Advertisement

JETP Letters

, Volume 107, Issue 6, pp 384–389 | Cite as

Model-Independent X-Ray Scattering Study of a Silica Sol Surface

  • A. M. Tikhonov
  • V. E. Asadchikov
  • Yu. O. Volkov
  • B. S. Roshchin
  • V. Honkimäki
  • M. V. Blanco
Condensed Matter

Abstract

The structure of the adsorbed layer of alkali ions on the surface of colloidal silica solutions with a particle size of 27 nm has been studied by reflectometry and diffuse scattering of synchrotron radiation with a photon energy of about 71 keV. Electron density profiles in the direction perpendicular to the surface have been reconstructed from experimental data and spectra of the correlation function of heights in the surface plane have been obtained. The revealed deviation of the integral and frequency characteristics of the roughness spectra of the silica sol surface from predictions of the capillary-wave theory is of a fundamental character. This deviation is due to the contribution from roughnesses with low spatial frequencies ν < 10−4 nm–1 and to the interference of diffuse scattering from different layer interfaces of the surface structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).CrossRefGoogle Scholar
  2. 2.
    A. M. Tikhonov, J. Phys. Chem. C 111, 930 (2007).CrossRefGoogle Scholar
  3. 3.
    Y. I. Kharkats and J. Ulstrup, J. Electroanal. Chem. 308, 17 (1991).CrossRefGoogle Scholar
  4. 4.
    J. Ulstrup and Yu. I. Kharkats, Russ. J. Electrochem. 29, 299 (1993).Google Scholar
  5. 5.
    B. S. Gourary and F. S. Adrian, Solid State Phys. 10, 127 (1960).CrossRefGoogle Scholar
  6. 6.
    I. V. Kozhevnikov, Nucl. Instrum. Methods Phys. Res., Sect. A 508, 519 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    I. V. Kozhevnikov, L. Peverini, and E. Ziegler, Phys. Rev. B 85, 125439 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Pingali, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispers. Sci. Technol. 27, 715 (2006).CrossRefGoogle Scholar
  10. 10.
    A. M. Tikhonov, J. Chem. Phys. 124, 164704 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).Google Scholar
  12. 12.
    F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    A. M. Tikhonov, J. Chem. Phys. 126, 171102 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    V. E. Asadchikov, V. V. Volkov, Yu. O. Volkov, K. A. Dembo, I. V. Kozhevnikov, B. S. Roshchin, D. A. Frolov, and A. M. Tikhonov, JETP Lett. 94, 585 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    L. H. Allen and E. Matijevic, J. Colloid Interface Sci. 31, 287 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    A. C. J. H. Johnson, P. Greenwood, M. Hagstrom, Z. Abbas, and S. Wall, Langmuir 24, 12798 (2008).CrossRefGoogle Scholar
  17. 17.
    V. V. Volkov, private commun.Google Scholar
  18. 18.
    V. Honkimaki, H. Reichert, J. Okasinski, and H. Dosch, J. Synchrotr. Rad. 13, 426 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Li, D. J. Chaiko, A. M. Tikhonov, and M. L. Schlossman, Phys. Rev. Lett. 86, 5934 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Tikhonov, M. Li, and M. L. Schlossman, J. Phys. Chem. B 105, 8065 (2001).CrossRefGoogle Scholar
  21. 21.
    A. M. Tikhonov, JETP Lett. 104, 309 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    A. M. Tikhonov, JETP Lett. 92, 356 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Tikhonov, V. E. Asadchikov, and Yu. O. Volkov, JETP Lett. 102, 478 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, I. S. Monakhov, and I. S. Smirnov, JETP Lett. 104, 873 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    I. V. Kozhevnikov and M. V. Pyatakhin, J. X-ray Sci. Technol. 8, 253 (2000).Google Scholar
  27. 27.
    I. V. Kozhevnikov, Crystallogr. Rep. 57, 490 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
  29. 29.
    A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).ADSCrossRefGoogle Scholar
  30. 30.
    A. Yu. Karabekov and I. V. Kozhevnikov, J. X-ray Sci. Technol. 4, 37 (1993).CrossRefGoogle Scholar
  31. 31.
    M. Tolan, Springer Tracts Mod. Phys. 148, 1 (1999).CrossRefGoogle Scholar
  32. 32.
    M. A. Vorotyntsev and S. N. Ivanov, JETP 88, 1729 (1985).Google Scholar
  33. 33.
    I. Rouzina and V. A. Bloomfield, J. Phys. Chem. 100, 9977 (1996).CrossRefGoogle Scholar
  34. 34.
    N. Gronbech-Jensen, R. J. Mashl, R. F. Bruinsma, and W. M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    B. I. Shklovskii, Phys. Rev. Lett. 82, 3268 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    J. J. Arenzon, J. F. Stilck, and Y. Levin, Eur. Phys. J. B 12, 79 (1999).ADSCrossRefGoogle Scholar
  37. 37.
    B. I. Shklovskii, Phys. Rev. E 60, 5208 (1999).MathSciNetCrossRefGoogle Scholar
  38. 38.
    Y. Burak, D. Andelman, and H. Orland, Phys. Rev. E 70, 016102 (2004).ADSCrossRefGoogle Scholar
  39. 39.
    V. S. Edel’man, Sov. Phys. Usp. 23, 227 (1980).ADSCrossRefGoogle Scholar
  40. 40.
    R. S. Crandall and R. Williams, Phys. Lett. A 34, 404 (1971).ADSCrossRefGoogle Scholar
  41. 41.
    C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).ADSCrossRefGoogle Scholar
  42. 42.
    A. M. Tikhonov, D. M. Mitrinovic, M. Li, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 104, 6336 (2000).CrossRefGoogle Scholar
  43. 43.
    A. M. Tikhonov, JETP Lett. 106, 743 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. M. Tikhonov
    • 1
  • V. E. Asadchikov
    • 2
  • Yu. O. Volkov
    • 2
  • B. S. Roshchin
    • 2
  • V. Honkimäki
    • 3
  • M. V. Blanco
    • 3
  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Shubnikov Institute of Crystallography, Federal Research Center Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia
  3. 3.European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations