Skip to main content
Log in

Parametric Disordering-Driven Topological Transitions in a Liquid Metacrystal

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We show that an amplitude-modulated electromagnetic wave incident onto a liquid metacrystal (LMC) may cause parametric instability of meta-atoms’ mechanical oscillations. It results in either phase-coherent motion of the meta-atoms (leading to time-dependent components of LMC dielectric tensor) or chaotic isotropization of the medium that can be treated in terms of effective temperature. Both scenarios enable switching of the sign of certain components of permittivity tensor that, in turn, modifies the topology of isofrequency surface. Thus, the topological transition in LMC is expected to have an oscillatory or quasi-thermal character depending on the parameters, but in any case, the change of topology leads to dramatic changes of the medium properties, switching the LMC between the transparent and opaque states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  ADS  Google Scholar 

  2. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007).

    Article  ADS  Google Scholar 

  3. A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, Ch. Jagadish, and Yu. S. Kivshar, Appl. Phys. Lett. 100, 121113 (2012).

    Article  ADS  Google Scholar 

  4. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, Appl. Phys. Lett. 94, 151105 (2009).

    Article  ADS  Google Scholar 

  5. A. Poddubny, I. Iorsh, P. Belov, and Yu. Kivshar, Nat. Photon. 7, 948 (2013).

    Article  ADS  Google Scholar 

  6. S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Yu. S. Kivshar, and X. Zhang, Nat. Commun. 7, 11329 (2016).

    Article  ADS  Google Scholar 

  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science (Washington, DC, U. S.) 314, 977 (2006).

    Article  ADS  Google Scholar 

  8. B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, Phys. Rev. Lett. 103, 153901 (2009).

    Article  ADS  Google Scholar 

  9. N. A. Zharova, A. A. Zharov, Jr., and A. A. Zharov, Phys. Rev. A 88, 053818 (2013).

    Article  ADS  Google Scholar 

  10. A. A. Zharov, I. V. Shadrivov, and Yu. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).

    Article  ADS  Google Scholar 

  11. M. Lapine, I. V. Shadrivov, D. A. Powell, and Yu. S. Kivshar, Nat Mater. 11, 30 (2012).

    Article  ADS  Google Scholar 

  12. M. Lapine, I. V. Shadrivov, D. A. Powell, and Yu. S. Kivshar, Sci. Rep. 1, 138 (2011).

    Article  ADS  Google Scholar 

  13. A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Yu. S. Kivshar, R. C. McPhedran, and P. A. Belov, Adv. Mater. 25, 3409 (2013).

    Article  Google Scholar 

  14. S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, Sci. Rep. 6, 21921 (2016).

    Article  ADS  Google Scholar 

  15. A. B. Golovin and O. D. Lavrentovich, Appl. Phys. Lett. 95, 254104 (2009).

    Article  ADS  Google Scholar 

  16. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, Opt. Express 15, 14129 (2007).

    Article  ADS  Google Scholar 

  17. M. Fruhnert, S. Muhlig, F. Lederer, and C. Rockstuhl, Phys. Rev. B 89, 075408 (2014).

    Article  ADS  Google Scholar 

  18. A. A. Zharov, A. A. Zharov, Jr., and N. A. Zharova, J. Opt. Soc. Am. B 31, 559 (2014).

    Article  ADS  Google Scholar 

  19. A. A. Zharov, A. A. Zharov, Jr., and N. A. Zharova, Phys. Rev. E 90, 023207 (2014).

    Article  ADS  Google Scholar 

  20. M. Liu, K. Fan, W. Padilla, X. Zhang, and I. V. Shadrivov, Adv. Mater. 28, 1553 (2016).

    Article  Google Scholar 

  21. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science (Washington, DC, U. S.) 336, 205 (2012).

    Article  ADS  Google Scholar 

  22. A. A. Zharov, Jr., N. A. Zharova, and A. A. Zharov, J. Opt. Soc. Am. B 34, 546 (2017).

    Article  ADS  Google Scholar 

  23. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zharova.

Additional information

The article is published in the original.

Supplementary materials are available for this article at DOI: 10.1134/S0021364018060036 and are accessible for authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharov, A.A., Zharov, A.A. & Zharova, N.A. Parametric Disordering-Driven Topological Transitions in a Liquid Metacrystal. Jetp Lett. 107, 373–378 (2018). https://doi.org/10.1134/S0021364018060036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018060036

Navigation