Whispering Gallery Effect in Relativistic Optics
Abstract
A relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the “whispering gallery” effect, although nonideal due to laser–plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The process may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.
Preview
Unable to display preview. Download preview PDF.
References
- 1.T. Ditmire, T. Donnelly, A. Rubenchik, R. Falcone, and M. Perry, Phys. Rev. A 53, 3379 (1996).ADSCrossRefGoogle Scholar
- 2.V. P. Krainov and M. B. Smirnov, Phys. Usp. 43, 901 (2000).ADSCrossRefGoogle Scholar
- 3.J. Limpouch, N. N. Demchenko, S. Y. Gus’kov, M. Kálal, A. Kasperczuk, V. N. Kondrashov, E. Krouský, K. Mašek, P. Pisarczyk, T. Pisarczyk, and V. B. Rozanov, Plasma Phys. Control. Fusion 46, 1831 (2004).ADSCrossRefGoogle Scholar
- 4.K. Okada, S. Sakabe, H. Shiraga, T. Mochizuki, and C. Yamanaka, Jpn. J. Appl. Phys. 21, L257 (1982).ADSCrossRefGoogle Scholar
- 5.S. N. Chen, T. Iwawaki, K. Morita, P. Antici, S. D. Baton, F. Filippi, H. Habara, M. Nakatsutsumi, P. Nicolaï, W. Nazarov, C. Rousseaux, M. Starodubstev, K. A. Tanaka, and J. Fuchs, Sci. Rep. 6, 21495 (2016).ADSCrossRefGoogle Scholar
- 6.S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z.M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, Phys. Rev. Lett. 101, 145001 (2008).ADSCrossRefGoogle Scholar
- 7.M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B. M. Luther, L. Yin, S. Wang, and J. J. Rocca, Nat. Photon. 7, 796 (2013).ADSCrossRefGoogle Scholar
- 8.G. Cristoforetti, A. Anzalone, F. Baffigi, G. Bussolino, G. D’Arrigo, L. Fulgentini, A. Giulietti, P. Koester, L. Labate, S. Tudisco, and L. A. Gizzi, Plasma Phys. Control. Fusion 56, 095001 (2014).ADSCrossRefGoogle Scholar
- 9.K. A. Ivanov, A. V. Brantov, S. I. Kudryashov, S. V. Makarov, D. A. Gozhev, R. V. Volkov, A. A. Ionin, V. Y. Bychenkov, and A. B. Savel’ev, Laser Phys. Lett. 12, 046005 (2015).ADSCrossRefGoogle Scholar
- 10.X. H. Yang, W. Yu, M. Y. Yu, H. Xu, Y. Y. Ma, Z.M. Sheng, H. B. Zhuo, Z. Y. Ge, and F. Q. Shao, Appl. Phys. Lett. 110 (2017); arXiv: 1701.02918.Google Scholar
- 11.L. Rayleigh, Philos. Mag., Ser. 6 20, 1001 (1910).CrossRefGoogle Scholar
- 12.S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).ADSCrossRefGoogle Scholar
- 13.P. Korneev, E. D’Humières, and V. Tikhonchuk, Phys. Rev. E 91, 043107 (2015).ADSCrossRefGoogle Scholar
- 14.P. Korneev, J. Phys.: Conf. Ser. 788, 012042 (2017).Google Scholar
- 15.N. Miyanaga, H. Azechi, K. A. Tanaka, et al., J. Phys. IV (Proc.) 133, 81 (2006).Google Scholar
- 16.S. Fujioka, Y. Arikawa, S. Kojima, et al., Phys. Plasmas 23, 56308 (2016).CrossRefGoogle Scholar
- 17.T. Nakamura, S. Kato, H. Nagatomo, and K. Mima, Phys. Rev. Lett. 93, 265002 (2004).ADSCrossRefGoogle Scholar
- 18.N. E. Andreev, L. P. Pugachev, M. E. Povarnitsyn, and P. R. Levashov, Laser Part. Beams 34, 115 (2016).ADSCrossRefGoogle Scholar
- 19.P. Korneev, Y. Abe, K. F. F. Law, et al., arXiv: 1711.00971 (2017).Google Scholar