Advertisement

JETP Letters

, Volume 107, Issue 5, pp 324–326 | Cite as

Polar Phase of Superfluid 3He: Dirac Lines in the Parameter and Momentum Spaces

  • G. E. Volovik
Condensed Matter

Abstract

The time reversal symmetric polar phase of the spin-triplet superfluid 3He has two types of Dirac nodal lines. In addition to the Dirac loop in the spectrum of the fermionic Bogoliubov quasiparticles in the momentum space (p x , p y , p z ), the spectrum of bosons (magnons) has Dirac loop in the 3D space of parameters—the components of magnetic field (H x ,H y ,H z ). The bosonic Dirac system lives on the border between the type-I and type-II.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).CrossRefGoogle Scholar
  2. 2.
    J. von Neumann and E. P. Wigner, Phys. Zeitschr. 30, 467 (1929).ADSGoogle Scholar
  3. 3.
    M. V. Berry, Ann. Phys. 131, 163 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    M. V. Berry, Nat. Phys. 6, 148 (2010).MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. E. Volovik, JETP Lett. 46, 98 (1987).ADSGoogle Scholar
  7. 7.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P. G. Grinevich and G. E. Volovik, J. Low Temp. Phys. 72, 371 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    Sh. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    C. D. Froggatt and H. B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991).CrossRefGoogle Scholar
  11. 11.
    P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  13. 13.
    S. Adler, Phys. Rev. 177, 2426 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature (London, U.K.) 386, 689 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    M. F. Lapa, Ch.-M. Jian, P. Ye, and T. L. Hughes, Phys. Rev. B 95, 035149 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    K. Nakata, S. K. Kim, J. Klinovaja, and D. Loss, Phys. Rev. B 96, 224414 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Phys. Rev. B 94, 075401 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Takahashi, T. Kariyado, and Y. Hatsugai, New J. Phys. 19, 035003 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    O. Zilberberg, Sh. Huang, J. Guglielmon, M. Wang, K. P. Chen, Ya. E. Kraus, and M. C. Rechtsman, Nature (London, U.K.) 533, 59 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    J. Nissinen and G. E. Volovik, Phys. Rev. D 97, 025018 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Dmitriev, A. A. Soldatov, and A. N. Yudin, JETP Lett. 103, 643 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Zavjalov, arXiv:1601.04190.Google Scholar
  25. 25.
    V. V. Zavjalov, S. Autti, V. B. Eltsov, P. Heikkinen, and G. E. Volovik, Nat. Commun. 7, 10294 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    G. E. Volovik and M. A. Zubkov, Phys. Rev. D 92, 055004 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    G. E. Volovik and M. A. Zubkov, Nucl. Phys. B 881, 514 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    A. A. Soluyanov, D. Gresch, Zh. Wang, Q. Sh. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature (London, U.K.) 527, 495 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    G. Autes, D. Gresch, A. A. Soluyanov, M. Troyer, and O. V. Yazyev, Phys. Rev. Lett. 117, 066402 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    G. E. Volovik and K. Zhang, J. Low Temp. Phys. 189, 276 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    D. J. Thouless, Phys. Rev. B 27, 6083 (1983).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    P. L. e S. Lopes, P. Ghaemi, Sh. Ryu, and T. L. Hughes, Phys. Rev. B 94, 235160 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations