Advertisement

JETP Letters

, Volume 107, Issue 5, pp 320–323 | Cite as

Classical Effects in the Weak-Field Magnetoresistance of InGaAs/InAlAs Quantum Wells

  • M. Yu. Melnikov
  • A. A. Shashkin
  • V. T. Dolgopolov
  • G. Biasiol
  • S. Roddaro
  • L. Sorba
Condensed Matter

Abstract

We observe an unusual behavior of the low-temperature magnetoresistance of the high-mobility two-dimensional electron gas in InGaAs/InAlAs quantum wells in weak perpendicular magnetic fields. The observed magnetoresistance is qualitatively similar to that expected for the weak localization and antilocalization but its quantity exceeds significantly the scale of the quantum corrections. The calculations show that the obtained data can be explained by the classical effects in electron motion along the open orbits in a quasiperiodic potential relief manifested by the presence of ridges on the quantum well surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh, Appl. Phys. Lett. 60, 1129 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    R. S. Goldman, H. H. Wieder, K. L. Kavanagh, K. Rammohan, and D. H. Rich, Appl. Phys. Lett. 65, 1424 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    A. Richter, M. Koch, T. Matsuyama, C. Heyn, and U. Merkt, Appl. Phys. Lett. 77, 3227 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    S. Gozu, T. Kita, Y. Sato, S. Yamada, and M. Tomizawa, J. Cryst. Growth 227–228, 155 (2001).CrossRefGoogle Scholar
  5. 5.
    S. Lohr, S. Mendach, T. Vonau, C. Heyn, and W. Hansen, Phys. Rev. B 67, 045309 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    M. Rosini, E. Cancellieri, D. Ercolani, G. Biasiol, C. Jacoboni, and L. Sorba, Phys. E (Amsterdam, Neth.) 40, 1392 (2008).CrossRefGoogle Scholar
  7. 7.
    D. Ercolani, G. Biasiol, E. Cancellieri, M. Rosini, C. Jacoboni, F. Carillo, S. Heun, L. Sorba, and F. Nolting, Phys. Rev. B 77, 235307 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    P. H. Beton, E. S. Alves, P. C. Main, L. Eaves, M. W. Dellow, M. Henini, O. H. Hughes, S. P. Beaumont, and C. D. W. Wilkinson, Phys. Rev. B 42, 9229 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8, 179 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Goran, A. A. Bykov, and A. I. Toropov, Semicond. Sci. Technol. 23, 105017 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    A. K. Bakarov, A. A. Bykov, N. D. Aksenova, D. V. Shcheglov, A. V. Latyshev, and A. I. Toropov, JETP Lett. 77, 662 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. Yu. Melnikov
    • 1
  • A. A. Shashkin
    • 1
  • V. T. Dolgopolov
    • 1
  • G. Biasiol
    • 2
  • S. Roddaro
    • 3
  • L. Sorba
    • 3
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.IOM CNRLaboratorio TASCTriesteItaly
  3. 3.NESTIstituto Nanoscienze-CNR and Scuola Normale SuperiorePisaItaly

Personalised recommendations