Doubly charmed baryon mass and wave function through a random walks method



The mass and the wave function of doubly charmed Ξ cc ++ (ccu) baryon are evaluated using Green Function Monte Carlo method to solve the three-body problem with Cornell potential. The mass of Ξ cc ++ with spin 1/2 is in a good agreement with the LHCb value. Simulation of the wave function by random walks resulted in a configuration of the quark-diquark type. The radius of Ξ cc ++ is much larger than the size needed for a large isospin splitting. The prediction for the Ω cc mass is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Aaij, B. Adeva, M. Adinolfi et al. (LHCb Collaboration), Phys. Rev. Lett. 119, 112001 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    S. Fleck and J.-M. Richard, Progr. Theor. Phys. 82, 760 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    B.O. Kerbikov, M. I. Polikarpov, L.V. Shevchenko and A.B. Zamolodchikov, Yad. Fiz. 46, 886 (1987).Google Scholar
  4. 4.
    B.O. Kerbikov, M. I. Polikarpov and L.V. Shevchenko, Nucl. Phys. B 331, 19 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Kiselev and A. K. Likhoded, Phys. Usp. 45, 455 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    M.H. Kalos, Phys. Rev. 128, 1791 (1962).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Ceperly and B. Alder, Science 231, 555 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    D. Ceperly and B. Alder, J. Chem. Phys. 81, 5833 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    R. Blankenbecler and R. L. Sugar, Phys. Rev. D 27, 1304 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Chin, J.W. Negele and S.E. Koonin, Ann. Phys. 157, 140 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T. M. Yan, Phys. Rev. D 17, 3090 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T. M. Yan, Phys. Rev. D 21, 313 (1980) (Erratum).ADSCrossRefGoogle Scholar
  14. 14.
    E. Eichten and C. Quigg, Phys. Rev. D 52, 1726 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    E. Eichten, S. Godfrey, H. Mahlke and J. L Rosner, Rev. Mod. Phys. 80, 1161 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    G. S. Bali, Phys. Rep. 343, 1 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    C.D. White, Phys. Lett. B 652, 79 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    A. M. Badalyan and D. I. Kitaroage, Yad. Fiz. 47, 1343 (1988).Google Scholar
  19. 19.
    A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. D 12, 147 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Kiselev, A. V. Berezhnoy and A.K. Likhoded, arXiv:1706.09181 [hep-ph].Google Scholar
  21. 21.
    M. Mattson, G. Alkhazov, A. G. Atamantchouk et al. (SELEX Collaboration), Phys. Rev. Lett. 89, 112001 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    A. Ocherashvili, M.A. Moinester, J. Russ et al. (SELEX Collaboration), Phys. Lett. B 628, 18 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    S. J. Brodsky, Feng-Kun Guo, C. Hanhart and Ulf-G. Meißner, Phys. Lett. B 698, 251 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    B. P. Kerbikov and Yu. A. Simonov, Phys. Rev. D 62, 093016 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Alikhanov Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Lebedev Physical InstituteMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations