Advertisement

JETP Letters

, Volume 107, Issue 5, pp 273–275 | Cite as

Doubly Charmed Baryon Mass and Wave Function through a Random Walks Method

Fields, Particles, and Nuclei
  • 12 Downloads

Abstract

The mass and the wave function of doubly charmed Ξcc++ (ccu) baryon are evaluated using Green Function Monte Carlo method to solve the three-body problem with Cornell potential. The mass of Ξcc++ with spin 1/2 is in a good agreement with the LHCb value. Simulation of the wave function by random walks resulted in a configuration of the quark–diquark type. The radius of Ξcc++ is much larger than the size needed for a large isospin splitting. The prediction for the Ωcc mass is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Aaij, B. Adeva, M. Adinolfi, et al. (LHCb Collab.), Phys. Rev. Lett. 119, 112001 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    S. Fleck and J.-M. Richard, Prog. Theor. Phys. 82, 760 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    B. O. Kerbikov, M. I. Polikarpov, L. V. Shevchenko, and A. B. Zamolodchikov, Sov. J. Nucl. Phys. 46, 506 (1987).Google Scholar
  4. 4.
    B. O. Kerbikov, M. I. Polikarpov, and L. V. Shevchenko, Nucl. Phys. B 331, 19 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Kiselev and A. K. Likhoded, Phys. Usp. 45, 455 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    M. H. Kalos, Phys. Rev. 128, 1791 (1962).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Ceperly and B. Alder, Science (Washington, DC, U.S.) 231, 555 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    D. Ceperly and B. Alder, J. Chem. Phys. 81, 5833 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    R. Blankenbecler and R. L. Sugar, Phys. Rev. D 27, 1304 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Chin, J. W. Negele, and S. E. Koonin, Ann. Phys. 157, 140 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 17, 3090 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 21, 313(E) (1980).Google Scholar
  14. 14.
    E. Eichten and C. Quigg, Phys. Rev. D 52, 1726 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    E. Eichten, S. Godfrey, H. Mahlke, and J. L Rosner, Rev. Mod. Phys. 80, 1161 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    G. S. Bali, Phys. Rep. 343, 1 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    C. D. White, Phys. Lett. B 652, 79 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    A. M. Badalyan and D. I. Kitaroage, Sov. J. Nucl. Phys. 47, 855 (1988).Google Scholar
  19. 19.
    A. de Rujula, H. Georgi, and S. L. Glashow, Phys. Rev. D 12, 147 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Kiselev, A. V. Berezhnoy, and A. K. Likhoded, arXiv:1706.09181 [hep-ph].Google Scholar
  21. 21.
    M. Mattson, G. Alkhazov, A. G. Atamantchouk, et al. (SELEX Collab.), Phys. Rev. Lett. 89, 112001 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    A. Ocherashvili, M. A. Moinester, J. Russ, et al. (SELEX Collab.), Phys. Lett. B 628, 18 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    S. J. Brodsky, Feng-Kun Guo, C. Hanhart, and U.-G. Meißner, Phys. Lett. B 698, 251 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    B. O. Kerbikov and Yu. A. Simonov, Phys. Rev. D 62, 093016 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Alikhanov Institute for Theoretical and Experimental PhysicsNational Research Center Kurcharov InstituteMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations