Effect of the Semiconductor Quantum Dot Shell Structure on Fluorescence Quenching by Acridine Ligand

Abstract

The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, Nano Lett. 10, 3223 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J.-M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomedicine 8, 516 (2012).

    Article  Google Scholar 

  3. 3.

    R. Bilan, F. Fleury, I. Nabiev, and A. Sukhanova, Bioconjug. Chem. 26, 609 (2015).

    Article  Google Scholar 

  4. 4.

    D. Dovzhenko, E. Osipov, I. Martynov, P. Linkov, and A. Chistyakov, Phys. Proc. 73, 126 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    P. Samokhvalov, M. Artemyev, and I. Nabiev, Chem.–Eur. J. 19, 1534 (2013).

    Article  Google Scholar 

  6. 6.

    P. Linkov, M. Artemyev, A. E. Efimov, and I. Nabiev, Nanoscale 5, 8781 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    J.-Y. Zhao, G. Chen, Y.-P. Gu, R. Cui, Z.-L. Zhang, Z.-L. Yu, B. Tang, Y.-F. Zhao, and D.-W. Pang, J. Am. Chem. Soc. 138, 1893 (2016).

    Article  Google Scholar 

  8. 8.

    K. D. Wegner and N. Hildebrandt, Chem. Soc. Rev. 44, 4792 (2015).

    Article  Google Scholar 

  9. 9.

    M. Laronze-Cochard, Y.-M. M. Kim, B. Brassart, J.-F. F. Riou, J.-Y. Y. Laronze, and J. Sapi, Eur. J. Med. Chem. 44, 3880 (2009).

    Article  Google Scholar 

  10. 10.

    S. Müller, S. Kumari, R. Rodriguez, and S. Balasubramanian, Nat. Chem. 2, 1095 (2010).

    Article  Google Scholar 

  11. 11.

    A. Artese, G. Costa, S. Distinto, F. Moraca, F. Ortuso, L. Parrotta, and S. Alcaro, Eur. J. Med. Chem. 68, 139 (2013).

    Article  Google Scholar 

  12. 12.

    A.-N. Cho, N. Chakravarthi, K. Kranthiraja, S. S. Reddy, H.-S. Kim, S.-H. Jin, and N.-G. Park, J. Mater. Chem. A 5, 7603 (2017).

    Article  Google Scholar 

  13. 13.

    J. Jasieniak, M. Califano, and S. E. Watkins, ACS Nano 5, 5888 (2011).

    Article  Google Scholar 

  14. 14.

    A. Islam, P. Murugan, K. C. Hwang, and C.-H. Cheng, Synth. Met. 139, 347 (2003).

    Article  Google Scholar 

  15. 15.

    V. A. Krivenkov, D. O. Solovyeva, P. S. Samokhvalov, R. S. Grinevich, K. I. Brazhnik, G. E. Kotkovskii, E. P. Lukashev, and A. A. Chistyakov, Laser Phys. Lett. 11, 115601 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    J. Bang, J. Park, R. Velu, E. Yoon, K. Lee, S. Cho, S. Cha, G. Chae, T. Joo, and S. Kim, Chem. Commun. 48, 9174 (2012).

    Article  Google Scholar 

  17. 17.

    P. Linkov, K. V. Vokhmintcev, P. S. Samokhvalov, and I. Nabiev, Opt. Spectrosc. 122, 8 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, J. Am. Chem. Soc. 125, 12567 (2003).

    Article  Google Scholar 

  19. 19.

    Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 130, 5026 (2008).

    Article  Google Scholar 

  20. 20.

    N. Razgoniaeva, P. Moroz, M. Yang, D. S. Budkina, H. Eckard, M. Augspurger, D. Khon, A. N. Tarnovsky, and M. Zamkov, J. Am. Chem. Soc. 139, 7815 (2017).

    Article  Google Scholar 

  21. 21.

    P. Samokhvalov, P. Linkov, J. Michel, M. Molinari, and I. Nabiev, in Colloidal Nanoparticles for Biomedical Applications IX, Ed. by W. J. Parak, Proc. SPIE 8955, 89550S (2014).

    Article  Google Scholar 

  22. 22.

    I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, J. Mater. Chem. 18, 675 (2008).

    Article  Google Scholar 

  23. 23.

    J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, and M. Califano, J. Phys. Chem. C 113, 19468 (2009).

    Article  Google Scholar 

  24. 24.

    P. Linkov, V. Krivenkov, I. Nabiev, and P. Samokhvalov, Mater. Today Proc. 3, 104 (2016).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. A. Linkov.

Additional information

Original Russian Text © P.A. Linkov, K.V. Vokhmintcev, P.S. Samokhvalov, M. Laronze-Cochard, J. Sapi, I.R. Nabiev, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 4, pp. 237–241.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Linkov, P.A., Vokhmintcev, K.V., Samokhvalov, P.S. et al. Effect of the Semiconductor Quantum Dot Shell Structure on Fluorescence Quenching by Acridine Ligand. Jetp Lett. 107, 233–237 (2018). https://doi.org/10.1134/S0021364018040070

Download citation