JETP Letters

, Volume 107, Issue 4, pp 247–253 | Cite as

Spin Crossover and the Magnetic PT Phase Diagram of Hematite at High Hydrostatic Pressures and Cryogenic Temperatures

  • A. G. Gavriliuk
  • V. V. Struzhkin
  • A. A. Mironovich
  • I. S. LyubutinEmail author
  • I. A. Troyan
  • P. Chow
  • Y. Xiao
Condensed Matter


The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0–72 GPa and the temperature range of 36–300 K in order to study the magnetic properties at a phase transition near a critical pressure of ~50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0–77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of ~48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS–LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic PT phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hubbard, Proc. R. Soc. London, Ser. A 277, 237 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    Transition Metal Oxides, Ed. by P. A. Cox (Clarendon, Oxford, 1992).Google Scholar
  3. 3.
    T. Yagi and S. Akimoto, in High Pressure Research in Geophysics, Ed. by S. Akimoto and M. Manghnani (Kluwer Academic, Tokyo, 1982), p.81.Google Scholar
  4. 4.
    T. Suzuki, T. Yagi, A. Akimoto, A. Ito, S. Morimoto, and S. Syono, in Solid State Physics under Pressure, Ed. by S. Minomura (KTK Scientific, Tokyo, 1985), p.149.Google Scholar
  5. 5.
    J. S. Olsen, C. Cousins, L. Gerward, H. Jhans, and B. Sheldon, Phys. Scr. 43, 327 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    G. Rozenberg, L. Dubrovinsky, M. Pasternak, O. Naaman, T. L. Bihan, and R. Ahuja, Phys. Rev. B 65, 064112 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    J. Badro, V. Struzhkin, J.-F. Shu, R. Hemley, H.-K. Mao, C. Kao, J.-P. Rueff, and G. Shen, Phys. Rev. Lett. 83, 4101 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Syono, A. Ito, S. Morimoto, S. Suzuki, T. Yagi, and S. Akimoto, Solid State Commun. 50, 97 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    S. Nasu, K. Kurimoto, S. Nagatomo, S. Endo, and F. Fujita, Hyperfine Interact. 29, 1583 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    M. Pasternak, G. Rozenberg, G. Machavariani, O. Naaman, R. Taylor, and R. Jeanloz, Phys. Rev. Lett. 82, 4663 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    M. P. Pasternak, G. K. Rozenberg, G. Y. Machavariani, O. Naaman, R. D. Taylor, and R. Jeanloz, Phys. Rev. Lett. 82, 4663 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    A. G. Gavriliuk, J. F. Lin, I. S. Lyubutin, and V. V. Struzhkin, JETP Lett. 84, 190 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    A. G. Gavriliuk and V. V. Struzhkin, Rev. Sci. Instrum. 80, 043906 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    Y. V. Shvyd'ko, Phys. Rev. B 59, 9132 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    S.-H. Shim and T. S. Duffy, Am. Mineralog. 87, 318 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    M. J. Massey, U. Baier, R. Merlin, and W. H. Weber, Phys. Rev. B 41, 7822 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    I. S. Lyubutin and A. G. Gavriliuk, Phys. Usp. 52, 989 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, and V. V. Struzhkin, Phys. Rev. B 79, 085125 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, M. Y. Hu, and H. K. Mao, JETP Lett. 82, 243 (2005).CrossRefGoogle Scholar
  20. 20.
    A. G. Gaviliuk, I. A. Trojan, I. S. Lyubutin, V. A. Sarkissian, and S. G. Ovchinnikov, JETP Lett. 100, 688 (2005).CrossRefGoogle Scholar
  21. 21.
    I. S. Lyubutin, A. G. Gavriliuk, I. A. Trojan, and R. A. Sadykov, JETP Lett. 82, 702 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    I. S. Lyubutin, A. G. Gavriliuk, K. V. Frolov, J.-F. Lin, and I. A. Trojan, JETP Lett. 90, 617 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    I. S. Lyubutin, J. F. Lin, A. G. Gavriliuk, A. A. Mironovich, A. G. Ivanova, A. L. Vasilyev, and V. V. Roddatis, Am. Mineralog. 98, 1803 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, S. G. Ovchinnikov, M. Y. Hu, and P. Chow, Phys. Rev. B 77, 155112 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    I. S. Lyubutin, V. V. Struzhkin, A. A. Mironovich, A. G. Gavriliuk, P. G. Naumov, J. F. Lin, S. G. Ovchinnikov, S. Sinogeikin, P. Chow, Y. Xiao, and R. J. Hemley, Proc. Natl. Acad. Sci. 110, 7142 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    E. Bykova, L. Dubrovinsky, N. Dubrovinskaia, M. Bykov, C. McCammon, S. V. Ovsyannikov, H.-P. Liermann, I. Kupenko, A. I. Chumakov, R. Rueffer, M. Hanfland, and V. Prakapenka, Nat. Commun. 7, 10661 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. G. Gavriliuk
    • 1
    • 2
    • 3
  • V. V. Struzhkin
    • 4
  • A. A. Mironovich
    • 2
  • I. S. Lyubutin
    • 1
    Email author
  • I. A. Troyan
    • 1
    • 2
    • 3
  • P. Chow
    • 5
  • Y. Xiao
    • 5
  1. 1.Shubnikov Institute of Crystallography, Federal Research Center Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  3. 3.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  4. 4.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA
  5. 5.High Pressure Collaborative Access Team, Geophysical LaboratoryCarnegie Institution of WashingtonArgonneUSA

Personalised recommendations