Advertisement

JETP Letters

, Volume 107, Issue 3, pp 192–195 | Cite as

Manifestations of Surface States in the Longitudinal Magnetoresistance of an Array of Bi Nanowires

  • Yu. I. Latyshev
  • A. V. Frolov
  • V. A. Volkov
  • T. Wade
  • V. A. Prudkoglyad
  • A. P. Orlov
  • V. M. Pudalov
  • M. Konczykowski
Condensed Matter

Abstract

The longitudinal magnetoresistance of the array of parallel-oriented bismuth nanowires each 100 nm in diameter grown by electrochemical deposition in nanopores of an Al2O3 membrane has been studied in magnetic fields up to 14 T and at temperatures down to 0.3 K. The resistance increases with the field and reaches a broad maximum in fields about 10 T. An anomalous increase in the resistance in weak fields is qualitatively consistent with the suppression of the antilocalization correction to the resistance, and the maximum is qualitatively associated with the classical size effect. Near the maximum at temperatures below 0.8 K, manifestations of reproducible magneto-oscillations of the resistance, which are periodic in field, have been detected. The period of these oscillations is close to a value corresponding to the passage of the flux quantum hc/e through the section of a nanowire. The Fourier analysis also confirms that the oscillations are periodic. This result is similar to the manifestation the Aharonov–Bohm effect caused by conducting surface states of Dirac fermions occupying L-valleys of bismuth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Khaikin, Sov. Phys. Usp. 11, 785 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    V. B. Sandomirskii, Sov. Phys. JETP 25, 101 (1967).ADSGoogle Scholar
  3. 3.
    Yu. F. Ogrin, V. N. Lutskii, and M. I. Elinson, JETP Lett. 3, 71 (1966).ADSGoogle Scholar
  4. 4.
    V. S. Edel’man, Adv. Phys. 25, 555 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    Ph. Hofmann, Prog. Surf. Sci. 81, 5 (2006).CrossRefGoogle Scholar
  6. 6.
    D. A. Glocker and M. J. Skove, Phys. Rev. B 15, 608 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J. Heremans, C. M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Phys. Rev. B 61, 2921 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    N. B. Brandt, D. V. Gitsu, A. A. Nikolaeva, and Ya. G. Ponomarev, JETP Lett. 24, 272 (1976).ADSGoogle Scholar
  9. 9.
    A. Nikolaeva, D. Gitsu, L. Konopko, M. J. Graf, and T. E. Huber, Phys. Rev. B 77, 075332 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    E. N. Bogachek, G. A. Gogadze, and I. O. Kulik, Sov. J. Low Temp. Phys. 4, 544 (1978).Google Scholar
  11. 11.
    N. B. Brandt, E. N. Bogachek, D. V. Gitsu, G. A. Gogadze, I. O. Kulik, A. A. Nikolaeva, and Ya. G. Ponomarev, Sov. J. Low Temp. Phys. 8, 358 (1982).Google Scholar
  12. 12.
    F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284, 1335 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    T. E. Huber, A. Nikolaeva, D. Gitsu, L. Konopko, C. A. Foss, Jr., and M. J. Graf, Appl. Phys. Lett. 84, 1326 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    T. E. Huber, A. Adeyeye, A. Nikolaeva, L. Konopko, R. C. Johnson, and M. J. Graf, Phys. Rev. B 83, 235414 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    J. Kim, S. Lee, Y. M. Brovman, M. G. Kim, P. Kim, and W. Lee, Appl. Phys. Lett. 104, 043105 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Volkov and T. N. Pinsker, Sov. Phys. Solid State 23, 1022 (1981).Google Scholar
  17. 17.
    V. V. Enaldiev and V. A. Volkov, JETP Lett. 104, 624 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    T. E. Huber, K. Selestine, and M. J. Graf, Phys. Rev. B 67, 245317 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    N. Marcano, S. Sangiao, M. Plaza, L. Pérez, A. Fernández Pacheco, R. Córdoba, M. C. Sánchez, L. Morellón, M. R. Ibarra, and J. M. de Teresa, Appl. Phys. Lett. 96, 082110 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    K. Zhu, L. Wu, X. Gong, S. Xiao, and X. Jin, Phys. Rev. B 94, 121401(R) (2016).ADSCrossRefGoogle Scholar
  21. 21.
    H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. I. Latyshev
    • 1
  • A. V. Frolov
    • 1
    • 2
  • V. A. Volkov
    • 1
    • 2
  • T. Wade
    • 3
  • V. A. Prudkoglyad
    • 4
  • A. P. Orlov
    • 1
  • V. M. Pudalov
    • 4
  • M. Konczykowski
    • 3
  1. 1.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Ecole PolytechniquePalaiseau, CedexFrance
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations