Advertisement

JETP Letters

, Volume 107, Issue 3, pp 182–185 | Cite as

Collisional Lifetimes of Elementary Excitations in Two-Dimensional Systems in the Field of a Strong Electromagnetic Wave

  • V. M. Kovalev
Condensed Matter
  • 27 Downloads

Abstract

A two-dimensional system with two nonequivalent valleys in the field of a strong circularly polarized electromagnetic wave is considered. It is assumed that the optical selection rules for a given polarization of light allow band-to-band transitions only in valleys of one, optically active, type (two-dimensional layer based on transition metal dichalcogenides, gapped graphene, etc.). This leads to the formation of photon-coupled electron–hole pairs, or an “optical insulator” state. It is assumed that the valleys of the second type (optically inactive) are populated with an equilibrium electron gas. The relaxation of elementary excitations in this hybrid system consisting of an electron gas and a gas of electron–hole pairs caused by the Coulomb interaction between the particles is investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Kolobov and J. Tominaga, Springer Ser. Mater. Sci. 239, 1 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, Phys. Status Solidi B 252, 2349 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X Marie, T. Amand, and B Urbaszek, arXiv:1707.05863.Google Scholar
  4. 4.
    A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    O. L. Berman and R. Ya. Kezerashvili, Phys. Rev. B 96, 094502 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    M. M. Fogler, L. V. Butov, and K. S. Novoselov, Nat. Commun. 5, 4555 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    O. L. Berman and R. Ya. Kezerashvili, Phys. Rev. B 93, 245410 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    V. F. Elesin, Sov. Phys. JETP 32, 328 (1971).ADSGoogle Scholar
  10. 10.
    V. M. Galitskii and V. F. Elesin, Resonant Interaction of Electromagnetic Fields with Semiconductors (Energoatomizdat, Moscow, 1986) [in Russian].Google Scholar
  11. 11.
    O. Cotlet, S. Zeytinoglu, M. Sigrist, E. Demler, and A. Imamoglu, Phys. Rev. B 93, 054510 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. Lett. 104, 106402 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Shelykh, T. Taylor, and A. V. Kavokin, Phys. Rev. Lett. 105, 140402 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M. Matuszewski, T. Taylor, and A. V. Kavokin, Phys. Rev. Lett. 108, 060401 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    M. V. Boev, V. M. Kovalev, and I. G. Savenko, Phys. Rev. B 94, 241408 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    V. M. Kovalev and A. V. Chaplik, JETP Lett. 94, 560 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    V. M. Kovalev and A. V. Chaplik, JETP Lett. 98, 331 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Kalameitsev and A. V. Chaplik, JETP Lett. 106, 522 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    V. M. Kovalev, W.-K. Tse, and M. V. Entin, JETP Lett. 106, 565 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    A. S. Aleksandrov and V. F. Elesin, Sov. Phys. JETP 45, 1035 (1977).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations