JETP Letters

, Volume 107, Issue 3, pp 186–191 | Cite as

Volume-Charged Cones on a Liquid Interface in an Electric Field

  • A. V. Subbotin
  • A. N. Semenov
Condensed Matter


In this study, we explore a novel type of slender conical liquid meniscus arisen in high electric field, which carries surface charge and net bulk charge of opposite sign. Stability of such dissipative structure is ensured by the balance between capillary and electrostatic forces and competition between the surface and bulk electric currents. The bulk charge is governed by the applied voltage being generated by the electric field of the cone due to dissociation/associations reactions at its apex. The effect of the physical parameters of the liquid on the microcone structure is elucidated. It is shown that the cone angle cannot exceed a critical value, which is a function of dielectric permittivity of the liquid. The electric current through the cone is found to be proportional to the square of the applied voltage. The obtained results can be applied for analysis of atomization processes of various liquids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Zeleny, J. Phys. Rev. 10, 1 (1917).ADSCrossRefGoogle Scholar
  2. 2.
    G. I. Taylor, Proc. R. Soc. London, Ser. A 280, 383 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    J. Fernández de la Mora, Ann. Rev. Fluid Mech. 39, 217 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    H.-H. Kim, J.-H. Kim, and A. Ogata, J. Aerosol Sci. 42, 249 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech. 41, 43 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Xie, J. Jiang, P. Davoodi, M. P. Srinivasan, and C.-H. Wang, Chem. Eng. Sci. 125, 32 (2015).CrossRefGoogle Scholar
  7. 7.
    N. Kirichenko, I. V. Petryanov-Sokolov, N. N. Suprun, and A. A. Shutov, Sov. Phys. Dokl. 31, 611 (1986).ADSGoogle Scholar
  8. 8.
    A. M. Gañán-Calvo, Phys. Rev. Lett. 79, 217 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    F. J. Higuera, J. Fluid Mech. 484, 303 (2003).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J. J. Feng, Phys. Fluids 14, 3912 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    R. T. Collins, J. J. Jones, M. T. Harris, and O. A. Basaran, Nat. Phys. 4, 149 (2008).CrossRefGoogle Scholar
  12. 12.
    S. N. Reznik and E. Zussmann, Phys. Rev. E 81, 026313 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. Ramos and A. Castellanos, Phys. Lett. A 184, 268 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    H. Li, T. C. Halsey, and A. Lobkovsky, Europhys. Lett. 27, 575 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Subbotin, JETP Lett. 100, 657 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Subbotin and A. N. Semenov, Proc. R. Soc. London, Ser. A 471, 20150290 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Subbotin and A. N. Semenov, JETP Lett. 102, 815 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    L. M. Martyushev and V. D. Seleznev, Phys. Rep. 426, 1 (2006).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    K. Tang and A. Gomez, J. Colloid Interface Sci. 175, 326 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    A. Jaworek, A. T. Sobczyk, T. Czech, and A. Krupa, J. Electrostat. 72, 166 (2014).CrossRefGoogle Scholar
  21. 21.
    A. I. Zhakin and P. A. Belov, Surf. Eng. Appl. Electrochem. 49, 141 (2013).CrossRefGoogle Scholar
  22. 22.
    J. Fernández de la Mora and I. G. Loscertales, J. Fluid Mech. 260, 155 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    D. A. Saville, Ann. Rev. Fluid Mech. 29, 27 (1997).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Subbotin, R. Stepanyan, A. Chiche, J. J. M. Slot, and G. ten Brinke, Phys. Fluids 25, 103101 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford, London, 1940).zbMATHGoogle Scholar
  26. 26.
    F. W. Peek, Dielectric Phenomena in High Voltage Engineering (McGraw-Hill, New York, 1920).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institut Charles Sadron, CNRS-UPR 22Université de Strasbourg, BP 84047Strasbourg Cedex 2France

Personalised recommendations