Skip to main content
Log in

Topology of a 3He-A Film on a Corrugated Graphene Substrate

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A thin film of superfluid 3He on a corrugated graphene substrate represents topological matter with a smooth disorder. It is possible that the atomically smooth disorder produced by the corrugated graphene does not destroy the superfluidity even in a very thin film, where the system can be considered as quasi two-dimensional topological material. This will allow us to study the effect of disorder on different classes of the 2 + 1 topological materials: the chiral 3He-A with intrinsic quantum Hall effect and the time reversal invariant planar phase with intrinsic spin quantum Hall effect. In the limit of smooth disorder, the system can be considered as a Chern mosaic, i.e., a collection of domains with different values of Chern numbers. In this limit, the quantization of the Hall conductance is determined by the percolated domain, while the density of the fermionic states is determined by the edge modes on the boundaries of the finite domains. This system can be useful for the general consideration of disorder in the topological matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Katsnelson and G. E. Volovik, J. Low Temp. Phys. 175, 655 (2014); arXiv:1310.3581.

    Article  ADS  Google Scholar 

  2. G. E. Volovik, Exotic Properties of Superfluid 3He (World Scientific, Singapore, New Jersey, London, Hong Kong, 1992).

    Book  Google Scholar 

  3. Yu. Makhlin, M. Silaev, and G. E. Volovik, Phys. Rev. B 89, 174502 (2014).

    Article  ADS  Google Scholar 

  4. G. E. Volovik, Sov. Phys. JETP 67, 1804 (1988).

    Google Scholar 

  5. H. So, Prog. Theor. Phys. 74, 585 (1985).

    Article  ADS  Google Scholar 

  6. K. Ishikawa and T. Matsuyama, Z. Phys. C 33, 41 (1986).

    Article  ADS  Google Scholar 

  7. K. Ishikawa and T. Matsuyama, Nucl. Phys. B 280, 523 (1987).

    Article  ADS  Google Scholar 

  8. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  9. G. E. Volovik, JETP Lett. 55, 368 (1992).

    ADS  Google Scholar 

  10. A. A. Burkov, Phys. Rev. Lett. 120, 016603 (2018).

    Article  ADS  Google Scholar 

  11. N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991).

    Article  ADS  Google Scholar 

  12. G. E. Volovik, JETP Lett. 93, 66 (2011).

    Article  ADS  Google Scholar 

  13. J. Röntynen and T. Ojanen, Phys. Rev. B 93, 094521 (2016).

    Article  ADS  Google Scholar 

  14. K. Pöyhönen and T. Ojanen, Phys. Rev. B 96, 174521 (2017).

    Article  ADS  Google Scholar 

  15. P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).

    Article  ADS  Google Scholar 

  16. E. M. Chudnovsky, Phys. Rev. B 33, 245 (1986).

    Article  ADS  Google Scholar 

  17. R. Movassagh, Phys. Rev. Lett. 119, 220504 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Morimoto, A. Furusaki, and Ch. Mudry, Phys. Rev. B 91, 235111 (2015).

    Article  ADS  Google Scholar 

  19. J. Song and E. Prodan, Phys. Rev. B 92, 195119 (2015).

    Article  ADS  Google Scholar 

  20. R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents, Phys. Rev. B 92, 085126 (2015).

    Article  ADS  Google Scholar 

  21. E. Prodan, arXiv:1602.00306.

  22. B. Lian, J. Wang, X.-Q. Sun, A. Vaezi, and Sh.-Ch. Zhang, arXiv:1709.05558.

  23. B. Wu, J. Song, J. Zhou, and H. Jiang, Chin. Phys. B 25, 117311 (2016); arXiv:1711.10725.

    Article  ADS  Google Scholar 

  24. G. E. Volovik, J. Low Temp. Phys. 150, 453 (2008); arXiv:0704.2484.

    Article  ADS  Google Scholar 

  25. V. V. Dmitriev, D. A. Krasnikhin, N. Mulders, A. A. Senin, G. E. Volovik, and A. N. Yudin, JETP Lett. 91, 599 (2010).

    Article  ADS  Google Scholar 

  26. E. M. Chudnovsky and D. A. Garanin, arXiv:1710.10608.

  27. T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).

    Article  MathSciNet  Google Scholar 

  28. G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 46, 401 (1977).

    ADS  Google Scholar 

  29. V. M. H. Ruutu, Ü. Parts, J. H. Koivuniemi, M. Krusius, E. V. Thuneberg, and G. E. Volovik, JETP Lett. 60, 671 (1994).

    ADS  Google Scholar 

  30. Yu. G. Makhlin and T. Sh. Misirpashaev, JETP Lett. 61, 49 (1995).

    ADS  Google Scholar 

  31. S. W. Hawking, Nucl. Phys. B 144, 349 (1978).

    Article  ADS  Google Scholar 

  32. A. J. Hanson and T. Regge, Lect. Notes Phys. 94, 354 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E. Topology of a 3He-A Film on a Corrugated Graphene Substrate. Jetp Lett. 107, 115–118 (2018). https://doi.org/10.1134/S0021364018020054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018020054

Navigation