JETP Letters

, Volume 107, Issue 2, pp 129–133 | Cite as

Emission Spectrum of a Qubit under Its Deep Strong Driving in the High-Frequency Dispersive Regime

  • A. P. Saiko
  • S. A. Markevich
  • R. Fedaruk
Quantum Informatics


We study the emission spectrum of a qubit under deep strong driving in the high-frequency dispersive regime when the driving frequency and strength exceed significantly the qubit transition frequency. Closed-form expressions for the steady-state first-order field correlation function and the multiphoton emission spectrum are obtained. The spectrum comprises a series of narrow delta-like lines that stem from coherent processes and Lorentzian peaks that result from the incoherent scattering of photons. The oscillating dependence of the widths of the emission lines on the driving strength is predicted. We show how the features of this dependence are governed by the qubit dephasing and relaxation rates.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. Rabi, Phys. Rev. 51, 652 (1937).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Yan, Z. Lü, and H. Zheng, Phys. Rev. A 91, 053834 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    X. Cao, J. Q. You, H. Zheng, and F. Nori, New J. Phys. 13, 073002 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    L. D. Feranchuk and A. V. Leonov, Phys. Lett. A 375, 385 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    L. D. Feranchuk, A. V. Leonov, and O. D. Skoromnik, J. Phys. A: Math. Theor. 49, 454001 (2016).CrossRefGoogle Scholar
  6. 6.
    P. Lougovski, F. Casagrande, A. Lulli, and E. Solano, Phys. Rev. A 96, 033802 (2017).CrossRefGoogle Scholar
  7. 7.
    P. Forn-Díaz, G. Romero, C. J. P. M. Harmans, E. Solano, and J. E. Mooij, Sci. Rep. 6, 26720 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    S. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori, Phys. Rev. A 75, 063414 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    J. Stehlik, Y. Dovzhenko, J. R. Petta, J. R. Johansson, F. Nori, H. Lu, and A. C. Gossard, Phys. Rev. B 86, 121303 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. F. Gonzalez-Zalba, S. N. Shevchenko, S. Barraud, J. R. Johansson, A. J. Ferguson, F. Nori, and A. C. Betz, Nano Lett. 16, 1614 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rev. B 85, 094502 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    T. Douce, M. Stern, N. Zagury, P. Bertet, and P. Milman, Phys. Rev. A 92, 052335 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Nature (London, U.K.) 431, 159 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    S. Saito, T. Meno, M. Ueda, H. Tanaka, K. Semba, and H. Takayanagi, Phys. Rev. Lett. 96, 107001 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    C. Deng, J.-L. Orgiazzi, F. Shen, S. Ashhab, and A. Lupascu, Phys. Rev. Lett. 115, 133601 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Phys. Rev. Lett. 87, 246601 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, Science (Washington, DC, U. S.) 326, 1520 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    P. London, P. Balasubramanian, B. Naydenov, L. P. McGuinness, and F. Jelezko, Phys. Rev. A 90, 012302 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    C. Avinadav, R. Fischer, P. London, and D. Gershoni, Phys. Rev. B 89, 245311 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    J. H. Shim, S-J. Lee, K-K. Yu, S. M. Hwang, and K. Kim, J. Magn. Reson. 239, 87 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, Nat. Phys. 11, 820 (2015).CrossRefGoogle Scholar
  23. 23.
    J. Casanova, G. Romero, I. Lizuain, J. J. Garcia-Ripoll, and E. Solano, Phys. Rev. Lett. 105, 263603 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Nat. Phys. 13, 44 (2017).CrossRefGoogle Scholar
  25. 25.
    P. Forn-Díaz, J. J. García-Ripoll, B. Peropadre, M. A. Yurtalan, J.-L. Orgiazzi, R. Belyansky, C. M. Wilson, and A. Lupascu, Nat. Phys. 13, 39 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Hausinger and M. Grifoni, Phys. Rev. A 81, 022117 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    A. P. Saiko, S. A. Markevich, and R. Fedaruk, Phys. Rev. A 93, 063834 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    A. L. Boité, M. J. Hwang, and M. B. Plenio, Phys. Rev. A 95, 023829 (2017); arXiv: 1612.01377.ADSCrossRefGoogle Scholar
  29. 29.
    J. Hauss, A. Fedorov, S. André, V. Brosco, C. Hutter, R. Kothari, S. Yeshwanth, A. Shnirman, and G. Schön, New J. Phys. 10, 095018 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    C. M. Wilson, G. Johansson, T. Duty, F. Persson, M. Sandberg, and P. Delsing, Phys. Rev. B 81, 024520 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    F. Beaudoin, J. M. Gambetta, and A. Blais, Phys. Rev. A 84, 043832 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon Breach, New York, 1961).Google Scholar
  33. 33.
    A. P. Saiko, G. G. Fedoruk, and S. A. Markevich, J. Exp. Theor. Phys. 105, 893 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    A. P. Saiko, R. Fedaruk, and S. A. Markevich, J. Phys. B: At. Mol. Opt. Phys. 47, 155502 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    H. Carmichael, An Open System Approach to Quantum Optics (Springer, Berlin, Heidelberg, 1993).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Scientific–Practical Material Research CentreNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of PhysicsUniversity of SzczecinSzczecinPoland

Personalised recommendations