Skip to main content

Visualization of Isofrequency Contours of Strongly Localized Waveguide Modes in Planar Dielectric Structures

Abstract

An experimental method has been proposed to study the dispersion properties of optical surface and waveguide modes in planar structures. An experimental setup involves a microscope with a high numerical aperture objective and a hemispherical solid immersion lens made of zinc selenide in contact with the sample surface. The reflection from the sample is detected in the back focal plane of the system. Such a configuration makes it possible to study strongly localized states with an effective refractive index up to 2.25 in the visible and near infrared spectral ranges. For a thin silicon layer deposited on a glass substrate, the possibility of visualization of isofrequency contrours with polarization resolution and the reconstruction of dispersion of waveguide modes depending on the direction of their propagation has been demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. T. Tamir, G. Griffel, and H. L. Bertoni, Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (Springer Science, New York, 2013).

    Google Scholar 

  2. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

    Google Scholar 

  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Nat. Photon. 4, 611 (2010).

    Article  ADS  Google Scholar 

  4. K. J. Ebeling, Integrated Optoelectronics: Waveguide Optics, Photonics, Semiconductors (Springer Science, New York, 2012).

    Google Scholar 

  5. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and Sh. Fan, Opt. Express 12, 1575 (2004).

    Article  ADS  Google Scholar 

  6. Z. Liu, S. Tibuleac, D. Shin, P. Young, and R. Magnusson, Opt. Lett. 23, 1556 (1998).

    Article  ADS  Google Scholar 

  7. A. Christ, S. Tikhodeev, N. Gippius, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 91, 183901 (2003).

    Article  ADS  Google Scholar 

  8. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, Nat. Nanotechnol. 2, 515 (2007).

    Article  Google Scholar 

  9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, New York, 2007).

    Book  Google Scholar 

  10. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, Nature 522, 192 (2015).

    Article  ADS  Google Scholar 

  11. O. Takayama, A. Bogdanov, and A. V. Lavrinenko, J. Phys.: Condens. Matter 29, 463001 (2017).

    ADS  Google Scholar 

  12. D. Zhang, R. Badugu, Y. Chen, S. Yu, P. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).

    Article  ADS  Google Scholar 

  13. R. Wagner, L. Heerklotz, N. Kortenbruck, and F. Cichos, Appl. Phys. Lett. 101, 081904 (2012).

    Article  ADS  Google Scholar 

  14. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Mater. Sci. Eng., B 149, 220 (2008).

    Article  Google Scholar 

  15. I. S. Sinev, A. A. Bogdanov, F. E. Komissarenko, K. S. Frizyuk, M. I. Petrov, K. Frizyuk, and S. Makarov, Laser Photon. Rev. 11, 1700168 (2017).

    Article  Google Scholar 

  16. J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, Science 340, 331 (2013).

    Article  ADS  Google Scholar 

  17. D. Permyakov, I. S. Mukhin, I. Shishkin, A. Samusev, P. A. Belov, and Yu. S. Kivshar, JETP Lett. 99, 622 (2014).

    Article  ADS  Google Scholar 

  18. S. M. Mansfield and G. Kino, Appl. Phys. Lett. 57, 2615(1990).

    Article  ADS  Google Scholar 

  19. L. Ghislain, V. Elings, K. Crozier, S. Manalis, S. Minne, K. Wilder, G. S. Kino, and C. F. Quate, Appl. Phys. Lett. 74, 501 (1999).

    Article  ADS  Google Scholar 

  20. Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).

    Article  ADS  Google Scholar 

  21. D. R. Mason, M. V. Jouravlev, and K. S. Kim, Opt. Lett. 35, 2007 (2010).

    Article  ADS  Google Scholar 

  22. L. Wang, M. C. Pitter, and M. G. Somekh, Opt. Lett. 36, 2794 (2011).

    Article  ADS  Google Scholar 

  23. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, Nat. Phys. 4, 60 (2008).

    Article  Google Scholar 

  24. Y. Rezus, S. Walt, R. Lettow, A. Renn, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, Phys. Rev. Lett. 108, 093601 (2012).

    Article  ADS  Google Scholar 

  25. J. Zhang, C. See, M. Somekh, M. Pitter, and S. Liu, Appl. Phys. Lett. 85, 5451 (2004).

    Article  ADS  Google Scholar 

  26. D. T. F. Marple, J. Appl. Phys. 35, 539 (1964).

    Article  ADS  Google Scholar 

  27. F. Abeles, Ann. Phys. (Paris) 5, 596 (1950).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Permyakov.

Additional information

Original Russian Text © D.V. Permyakov, I.S. Sinev, S.K. Sychev, A.S. Gudovskikh, A.A. Bogdanov, A.V. Lavrinenko, A.K. Samusev, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 1, pp. 12–17.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permyakov, D.V., Sinev, I.S., Sychev, S.K. et al. Visualization of Isofrequency Contours of Strongly Localized Waveguide Modes in Planar Dielectric Structures. Jetp Lett. 107, 10–14 (2018). https://doi.org/10.1134/S0021364018010083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018010083