Skip to main content
Log in

On the Dispersion Relation of Plasmons in a Gapless-Graphene-Based Superlattice with Alternating Fermi Velocity

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A graphene-based superlattice formed owing to the periodic modulation of the Fermi velocity is considered. Such a modulation is possible in graphene deposited on a strip substrate of materials with significantly different static dielectric constants. The dispersion relation for plasmons has been derived for this system in the case where the Fermi level lies in the low miniband. The problem of absorption of modulated external electromagnetic radiation because of the excitation of plasmons has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).

    Article  ADS  Google Scholar 

  2. P. V. Ratnikov and A. P. Silin, J. Exp. Theor. Phys. 114, 512 (2012).

    Article  ADS  Google Scholar 

  3. S. Lebegue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, Phys. Rev. B 79, 245117 (2009).

    Article  ADS  Google Scholar 

  4. P. L. Pekh and A. P. Silin, Phys. Wave Phenom. 25, 30 (2017).

    Article  ADS  Google Scholar 

  5. P. V. Ratnikov and A. P. Silin, JETP Lett. 100, 311 (2014).

    Article  ADS  Google Scholar 

  6. A. V. Kolesnikov and A. P. Silin, J. Exp. Theor. Phys. 82, 1145 (1996).

    ADS  Google Scholar 

  7. J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B 424, 595 (1994).

    Article  ADS  Google Scholar 

  8. J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 59, 2474 (1999).

    Article  ADS  Google Scholar 

  9. S. Das Sarma, E. H. Hwang, and W.-K. Tse, Phys. Rev. B 75, 121406(R) (2007).

    Article  ADS  Google Scholar 

  10. A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Solid State Commun. 143, 63 (2007).

    Article  ADS  Google Scholar 

  11. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. M. Basov, Nat. Phys. 4, 532 (2008).

    Article  Google Scholar 

  12. G. Li, A. Luican, and E. Y. Andrei, Phys. Rev. Lett. 102, 176804 (2009).

    Article  ADS  Google Scholar 

  13. D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, Nat. Phys. 7, 701 (2011).

    Article  Google Scholar 

  14. C. Hwang, D. A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, Sci. Rep. 2, 590 (2012).

    Article  Google Scholar 

  15. J. Chae, S. Jung, A. F. Young, C. R. Dean, L. Wang, Yu. Gao, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, P. Kim, N. B. Zhitenev, and J. A. Stroscio, Phys. Rev. Lett. 109, 116802 (2012).

    Article  ADS  Google Scholar 

  16. T. Stauber, N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. Lett. 118, 266801 (2017).

    Article  ADS  Google Scholar 

  17. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 93, 197402 (2004).

    Article  ADS  Google Scholar 

  18. P. V. Ratnikov, JETP Lett. 87, 292 (2008).

    Article  ADS  Google Scholar 

  19. S. G. Tikhodeev, JETP Lett. 53, 171 (1991).

    ADS  Google Scholar 

  20. S. G. Tikhodeev, Solid State Commun. 78, 339 (1991).

    Article  ADS  Google Scholar 

  21. A. P. Silin and S. V. Shubenkov, Phys. Solid State 40, 1223 (1998).

    Article  ADS  Google Scholar 

  22. V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

    Article  ADS  Google Scholar 

  23. P. V. Ratnikov and A. P. Silin, JETP Lett. 102, 713 (2015).

    Article  ADS  Google Scholar 

  24. E. A. Andryushin and A. P. Silin, Phys. Solid State 35, 164 (1993).

    ADS  Google Scholar 

  25. Yu. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, Int. J. Mod. Phys. B 27, 1341001 (2013).

    Article  ADS  Google Scholar 

  26. A. V. Chaplik, JETP Lett. 100, 262 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Ratnikov.

Additional information

Original Russian Text © P.V. Ratnikov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 12, pp. 775–779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnikov, P.V. On the Dispersion Relation of Plasmons in a Gapless-Graphene-Based Superlattice with Alternating Fermi Velocity. Jetp Lett. 106, 810–814 (2017). https://doi.org/10.1134/S0021364017240110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017240110

Navigation