Skip to main content
Log in

Surface Microparticles in Liquid Helium. Quantum Archimedes’ Principle

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Deviations from Archimedes’ principle for spherical molecular hydrogen particles with the radius R0 at the surface of 4He liquid helium have been investigated. The classical Archimedes’ principle holds if R0 is larger than the helium capillary length Lcap ≅ 500 μm. In this case, the elevation of a particle above the liquid is h+ ~ R0. At 30 μm < R0 < 500 μm, the buoyancy is suppressed by the surface tension and h+ ~ R30/L2cap. At R0 < 30 μm, the particle is situated beneath the surface of the liquid. In this case, the buoyancy competes with the Casimir force, which repels the particle from the surface deep into the liquid. The distance of the particle to the surface is h- ~ R5/3c/R2/30 if R0 > Rc. Here, \({R_c} \cong {\left( {\frac{{\hbar c}}{{\rho g}}} \right)^{1/5}} \approx 1\), where ħ is Planck’s constant, c is the speed of light, g is the acceleration due to gravity, and ρ is the mass density of helium. For very small particles (R0 < Rc), the distance h_ to the surface of the liquid is independent of their size, h_ = Rc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Dyugaev, P. D. Grigor’ev, and E. V. Lebedeva, J. Low Temp. Phys. 38, 1001 (2012).

    Article  Google Scholar 

  2. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1959), Chap. 7.

    MATH  Google Scholar 

  3. N. Uotami, J. Kubota, W. Sekine, M. Chikasue, M. Shindo, and O. Ishihara, J. Plasma Fusion Res. Series 9, 404 (2010).

    Google Scholar 

  4. S. V. Filatov, S. A. Aliev, A. A. Levchenko, and D. A. Khramov, JETP Lett. 104, 702 (2017).

    Article  ADS  Google Scholar 

  5. S. V. Filatov, D. A. Khramov, and A. A. Levchenko, JETP Lett. 106, 330 (2017).

    Article  ADS  Google Scholar 

  6. A. A. Levchenko, L. P. Mezhov-Deglin, and A. A. Pel’- menev, JETP Lett. 106, 252 (2017).

    Article  ADS  Google Scholar 

  7. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

    Google Scholar 

  8. A. M. Dyugaev, P. D. Grigor’ev, and E. V. Lebedeva, JETP Lett. 89, 145 (2009).

    Article  ADS  Google Scholar 

  9. E. V. Lebedeva, A. M. Dyugaev, and P. D. Grigoriev, J. Exp. Theor. Phys. 110, 694 (2010).

    Article  ADS  Google Scholar 

  10. A. M. Dyugaev, P. D. Grigoriev, and E. V. Lebedeva, J. Low Temp. Phys. 37, 803 (2011).

    Article  Google Scholar 

  11. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer, Berlin, 1985).

    Google Scholar 

  12. P. Moroshkin, R. Batulin, P. Leiderer, and K. Kono, Phys. Chem. Chem. Phys. 18, 26444 (2016).

    Article  Google Scholar 

  13. G. Akinci and J. A. Northby, Phys. Rev. Lett. 42, 573 (1979).

    Article  ADS  Google Scholar 

  14. K. R. Atkins, Phys. Rev. 116, 1339 (1959).

    Article  ADS  Google Scholar 

  15. A. M. Dyugaev, P. D. Grigoriev, and P. Wyder, Phys. Status Solidi B 237, 260 (2003).

    Article  ADS  Google Scholar 

  16. E. V. Lebedeva, A. M. Dyugaev, and P. D. Grigor’ev, J. Exp. Theor. Phys. 98, 441 (2004).

    Article  Google Scholar 

  17. P. Savich and A. Shalnikov, J. Phys. USSR 10, 299 (1946).

    Google Scholar 

  18. L. P. Mezhov-Deglin and A. M. Kokotin, Low Temp. Phys. 119, 385 (2000).

    Article  ADS  Google Scholar 

  19. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, J. Low Temp. Phys. 36, 590 (2010).

    Article  Google Scholar 

  20. E. B. Gordon, R. Nishida, R. Nomura, and Y. Okuda, JETP Lett. 85, 581 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Lebedeva.

Additional information

Original Russian Text © A.M. Dyugaev, E.V. Lebedeva, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 12, pp. 755–759.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyugaev, A.M., Lebedeva, E.V. Surface Microparticles in Liquid Helium. Quantum Archimedes’ Principle. Jetp Lett. 106, 788–792 (2017). https://doi.org/10.1134/S0021364017240079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017240079

Navigation