Skip to main content
Log in

Quantum Oscillations of the Microwave Sensitivity of a Spin-Torque Diode in a Magnetic Nanobridge

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The reduction of the area of the cross section of a spin-valve-like structure to a nanoscale is an important problem of modern spin electronics. However, the transverse quantization of electronic states in the spin valve, which forms a magnetic nanobridge at this scale, additionally affects not only the magnetoresistance but also the spin-transfer torques. In this work, features of the quantization of the magnetoresistance and spin-angular momentum associated with the spin transfer in a Co/Au/Co metallic nanobridge with metallic contacts have been theoretically analyzed. It has been shown that these features are manifested in oscillations of the microwave sensitivity of a spin-torque diode based on the spin-valve structure mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Slonczewski, in Progress in Magnetic Nanostructures in Modern Technology: Spintronics, Magnetic MEMS and Recording, Ed. by B. Azzerboni, G. Asti, L. Pareti, and M. Ghidini (Springer, Dordrecht, 2008), p. 1.

  2. N. Locatelli, V. Cros, and J. Grollier, Nat. Mater. 13, 11 (2014).

    Article  ADS  Google Scholar 

  3. B. Fang, M. Carpentieri, X. Hao, H. Jiang, J. A. Katine, I. N. Krivorotov, B. Ocker, J. Langer, K. L. Wang, B. Zhang, B. Azzerboni, P. K. Amiri, G. Finnocchio, and Z. Zeng, Nat. Commun. 7, 11259 (2016).

    Article  ADS  Google Scholar 

  4. A. F. Popkov, N. E. Kulagin, and G. D. Demin, Solid State Commun. 248, 140 (2016).

    Article  ADS  Google Scholar 

  5. S. Miwa, S. Ishibashi, H. Tomita, T. Nozaki, E. Tamura, J. Ando, N. Mizuochi, T. Saruya, H. Kubota, K. Yakushiji, T. Tanuguchi, H. Imamura, A. Fukushima, S. Yuasa, and Y. Suzuki, Nat. Mater. 13, 50 (2014).

    Article  ADS  Google Scholar 

  6. A. F. Popkov, N. E. Kulagin, G. D. Demin, and K. A. Zvezdin, Izv. Vyssh. Uchebn. Zaved., Elektron. 22, 109 (2017).

    Google Scholar 

  7. N. Agräit, A. L. Yeyati, and J. M. Ruitenbeek, Phys. Rep. 377, 81 (2003).

    Article  ADS  Google Scholar 

  8. G. B. Lesovik and I. A. Sadovskyy, Phys. Usp. 54, 1007 (2011).

    Article  ADS  Google Scholar 

  9. R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

    Article  Google Scholar 

  10. N. Agräit, J. C. Rogrigo, and S. Vieira, Phys. Rev. B 47, 12345(R) (1993).

    Article  ADS  Google Scholar 

  11. M. Brandbyge, J. Schiotz, M. R. Sorensen, P. Stoltze, K. W. Jacobsen, J. K. Norskov, L. Olesen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Phys. Rev. B 52, 8499 (1995).

    Article  ADS  Google Scholar 

  12. H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature (London, U.K.) 395, 780 (1998).

    Article  ADS  Google Scholar 

  13. H. Imamura, N. Kobayashi, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 84, 1003 (2000).

    Article  ADS  Google Scholar 

  14. A. K. Zvezdin and A. F. Popkov, JETP Lett. 71, 209 (2000).

    Article  ADS  Google Scholar 

  15. L. R. Tagirov, B. P. Vodopyanov, and B. M. Garipov, J. Magn. Magn. Mater. 258–259, 61 (2003).

    Article  ADS  Google Scholar 

  16. H. D. Chopra, M. R. Sullivan, J. N. Armstrong, and S. Z. Hua, Nat. Mater. 4, 832 (2005).

    Article  ADS  Google Scholar 

  17. R. Requist, P. P. Baruselli, A. Smogunov, M. Fabrizio, S. Modesti, and E. Tosatti, Nat. Nanotechnol. 11, 499 (2016).

    Article  ADS  Google Scholar 

  18. Y. Kondo and K. Takayanagi, Science 289, 606 (2000).

    Article  ADS  Google Scholar 

  19. S. Egle, C. Bacca, H. F. Pernau, M. Huefner, D. Hinzke, U. Nowak, and E. Scheer, Phys. Rev. B 81, 134402 (2010).

    Article  ADS  Google Scholar 

  20. P. Ogrodnik, T. Stobiecki, J. Barnas, M. Frankowski, J. Cheçinski, F. A. Vetró, and J.-P. Ansermet, arXiv:1706.01036v1.

  21. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Article  ADS  Google Scholar 

  22. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).

    Article  ADS  Google Scholar 

  23. E. Barati, M. Cinal, D. M. Edwards, and A. Umerski, Phys. Rev. B 90, 014420 (2014).

    Article  ADS  Google Scholar 

  24. S. Perna, R. Tomasello, T. Scimone, M. d’Aquino, C. Serpico, M. Carpentieri, and G. Finocchio, IEEE Trans. Magn. 53, 1400107 (2016).

    Google Scholar 

  25. C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012).

    Article  ADS  Google Scholar 

  26. J. Sun, Ph.D. Thesis (King Abdullah Univ. Sci. Technol., Thuwal, Saudi Arabia, 2013).

    Google Scholar 

  27. W. Skowroński, S. Ziętek, M. Cecot, T. Stobiecki, J. Wrona, K. Yakushiji, T. Nozaki, H. Kubota, and S. Yuasa, in Proc. of the 21 International Conference on Microwave, Radar and Wireless Communications MIKON-2016, Poland, Krakow, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Demin.

Additional information

Original Russian Text © G.D. Demin, A.F. Popkov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 12, pp. 782–788.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demin, G.D., Popkov, A.F. Quantum Oscillations of the Microwave Sensitivity of a Spin-Torque Diode in a Magnetic Nanobridge. Jetp Lett. 106, 821–827 (2017). https://doi.org/10.1134/S0021364017240055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017240055

Navigation