On the induction of the first-order phase magnetic transitions by acoustic vibrations in MnSi



The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with longwave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if in the system without allowance of the acoustic phonons the heat capacity becomes infinite. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.E. Petrova and S.M. Stishov, Phys. Rev. B 94, 020410(R) (2016).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Ishikawa and M. Arai, J. Phys. Soc. Jpn. 53, 2726 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Brazovskii, Sov. Phys. JETP 41, 85 (1975).ADSGoogle Scholar
  5. 5.
    M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Böni, and C. Pfleiderer, Phys. Rev. B 87, 134407 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    J. Frenkel, J. Chem. Phys. 7, 538 (1939).ADSCrossRefGoogle Scholar
  7. 7.
    A. F. Andreev, Sov. Phys. JETP 18, 1415 (1964).Google Scholar
  8. 8.
    A.E. Petrova and S.M. Stishov, J. Phys.: Condens. Matter 1, 196001 (2009).ADSGoogle Scholar
  9. 9.
    A.E. Petrova and S.M. Stishov, Phys. Rev. B 91, 214402 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    A. Bauer, M. Garst, and C. Pfleiderer, Phys. Rev. Lett. 110, 177207 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    V.G. Vaks and A. I. Larkin, Sov. Phys.–JETP 2, 678 (1966).ADSGoogle Scholar
  12. 12.
    B. A. Strukov and A.P. Levanyuk, Ferroelectric phenomena in crystals, Springer, N.Y. (1998).CrossRefMATHGoogle Scholar
  13. 13.
    V. L. Pokrovskii, Advances in Physics 8, 595 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    V. L. Pokrovskii, Sov. Phys.–Solid State 10, 2852 (1969).Google Scholar
  15. 15.
    A. I. Larkin and S.A. Pikin, Sov. Phys. JETP 9, 891 (1969).ADSGoogle Scholar
  16. 16.
    A. I. Larkin and S.A. Pikin, Sov. Phys.-JETP 9, 5 (1969).Google Scholar
  17. 17.
    S. A. Pikin, Structural Transformations in Liquid Crystals, Gordon and Breach Science Publishers (1991).Google Scholar
  18. 18.
    S. A. Pikin, ZhETF 58, 1406 (1970).Google Scholar
  19. 19.
    C.P. Bean and R.D. Rodbell, Phys. Rev. 126, 104 (1962).ADSCrossRefGoogle Scholar
  20. 20.
    L. D. Landau and E.M. Lifshitz, Statistical Physics, 3rd Ed., Pergamon Press, London (1981).MATHGoogle Scholar
  21. 21.
    B. I. Widom, J. Phys. Chem. 43, 3892 (1965).CrossRefGoogle Scholar
  22. 22.
    B. I. Widom, J. Phys. Chem. 43, 3896 (1965).Google Scholar
  23. 23.
    C. Domb and D. L. Hunter, Proc. Phys. Soc. 86, 1147 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    T. D. Lee and C. N. Yand, Phys. Rev. 87, 410 (1952).ADSCrossRefGoogle Scholar
  25. 25.
    M. Suzuki and M.E. Fisher, J. Math. Phys. 12, 235 (1971).ADSCrossRefGoogle Scholar
  26. 26.
    V.G. Vaks, and A. I. Larkin, Sov. Phys. JETP 2(3), 678 (1966).ADSGoogle Scholar
  27. 27.
    V.G. Vaks, and A. I. Larkin, ZhETF 49, 975 (1965).Google Scholar
  28. 28.
    G. Newell and E. Montroll, Rev. Mod. Phys. 5, 353 (1953).ADSCrossRefGoogle Scholar
  29. 29.
    C. Domb and A. Miedema, Prog. Low Temp. Phys. 4, 296 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of SciencesMoscowRussia

Personalised recommendations