Skip to main content
Log in

Probing the Critical Point of the Jaynes–Cummings Second-Order Dissipative Quantum Phase Transition

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We highlight the importance of quantum fluctuations in organizing a dissipative quantum phase transition for the driven Jaynes–Cummings interaction with variable qubit-cavity detuning. The system response presents a substantial difference from the predictions of the semiclassical theory, the extent of which is revealed in the properties of quantum bistability, and visualized with the help of quasi-distribution functions for the cavity field, subject to an appropriate scale parameter. States anticipated by the neoclassical theory of radiation coexist in the quantum picture, following the occurrence of spontaneous dressed-state polarization and phase bistability at resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, Phys. Rev. X 7, 011012 (2017).

    Google Scholar 

  2. H. J. Carmichael, Phys. Rev. X 5, 031028 (2015).

    Google Scholar 

  3. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature (London, U.K.) 436, 87 (2005).

    Article  ADS  Google Scholar 

  4. K. W. Murch, S. J. Weber, K. M. Beck, E. Ginossar, and I. Siddiqi, Nature (London, U.K.) 499, 62 (2013).

    Article  ADS  Google Scholar 

  5. A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997).

    Article  ADS  Google Scholar 

  6. I. Carusotto, D. Gerace, H. E. Tureci, S. de Liberato, C. Ciuti, and A. Imamoglu, Phys. Rev. Lett. 103, 033601 (2009).

    Article  ADS  Google Scholar 

  7. D. Kilda and J. Keeling, arXiv:1709.06361.v1 (2017).

  8. C. Joshi, F. Nissen, and J. Keeling, Phys. Rev. A 88, 063835 (2013).

    Article  ADS  Google Scholar 

  9. C.-E. Bardyn and A. Imamoglu, Phys. Rev. Lett. 109, 253606 (2012).

    Article  ADS  Google Scholar 

  10. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  11. L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf, Nat. Phys. 5, 105 (2009).

    Article  Google Scholar 

  12. C. M. Savage and H. J. Carmichael, IEEE J. Quantum Electron. 24, 1495 (1988).

    Article  ADS  Google Scholar 

  13. P. Alsing and H. J. Carmichael, Quantum Opt. 3, 13 (1991).

    Article  ADS  Google Scholar 

  14. D. F. Walls and G. J. Milburn, Quantum Optics, 2nd ed. (Springer, Berlin, Heidelberg, 2008), Chap. 11, p. 215.

    Book  MATH  Google Scholar 

  15. H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999), Chap. 4, p. 101.

    Book  Google Scholar 

  16. W. Zurek, Rev. Mod. Phys. 75, 715 (2003).

    Article  ADS  Google Scholar 

  17. L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf, Nat. Phys. 5, 105 (2009).

    Article  Google Scholar 

  18. H. J. Carmichael, Statistical Methods in Quantum Optics 2 (Springer, Berlin, 2008), Chap. 16.

    Book  MATH  Google Scholar 

  19. L. S. Bishop, E. Ginossar, and S. M. Girvin, Phys. Rev. Lett. 105, 100505 (2010).

    Article  ADS  Google Scholar 

  20. A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  21. J. Koch, M. Yu. Terri, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  22. M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A 79, 013819 (2009).

    Article  ADS  Google Scholar 

  23. G. P. Agrawal and H. J. Carmichael, Phys. Rev. A 19, 2074 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Bonifacio, M. Gronchi, and L. A. Lugiato, Phys. Rev. A 18, 2266 (1978).

    Article  ADS  Google Scholar 

  25. M. I. Bolotov, L. A. Smirnov, G. V. Osipov, and A. Pikovsky, JETP Lett. 106 (6) (2017).

    Google Scholar 

  26. M. J. Panaggio and D. M. Abrams, Nonlinearity 28, R67 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  27. D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. K. Mavrogordatos.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrogordatos, T.K. Probing the Critical Point of the Jaynes–Cummings Second-Order Dissipative Quantum Phase Transition. Jetp Lett. 106, 815–820 (2017). https://doi.org/10.1134/S002136401724002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401724002X

Navigation