Advertisement

JETP Letters

, Volume 106, Issue 12, pp 815–820 | Cite as

Probing the Critical Point of the Jaynes–Cummings Second-Order Dissipative Quantum Phase Transition

Methods of Theoretical Physics

Abstract

We highlight the importance of quantum fluctuations in organizing a dissipative quantum phase transition for the driven Jaynes–Cummings interaction with variable qubit-cavity detuning. The system response presents a substantial difference from the predictions of the semiclassical theory, the extent of which is revealed in the properties of quantum bistability, and visualized with the help of quasi-distribution functions for the cavity field, subject to an appropriate scale parameter. States anticipated by the neoclassical theory of radiation coexist in the quantum picture, following the occurrence of spontaneous dressed-state polarization and phase bistability at resonance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, Phys. Rev. X 7, 011012 (2017).Google Scholar
  2. 2.
    H. J. Carmichael, Phys. Rev. X 5, 031028 (2015).Google Scholar
  3. 3.
    K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature (London, U.K.) 436, 87 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    K. W. Murch, S. J. Weber, K. M. Beck, E. Ginossar, and I. Siddiqi, Nature (London, U.K.) 499, 62 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    I. Carusotto, D. Gerace, H. E. Tureci, S. de Liberato, C. Ciuti, and A. Imamoglu, Phys. Rev. Lett. 103, 033601 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    D. Kilda and J. Keeling, arXiv:1709.06361.v1 (2017).Google Scholar
  8. 8.
    C. Joshi, F. Nissen, and J. Keeling, Phys. Rev. A 88, 063835 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    C.-E. Bardyn and A. Imamoglu, Phys. Rev. Lett. 109, 253606 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
  11. 11.
    L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf, Nat. Phys. 5, 105 (2009).CrossRefGoogle Scholar
  12. 12.
    C. M. Savage and H. J. Carmichael, IEEE J. Quantum Electron. 24, 1495 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    P. Alsing and H. J. Carmichael, Quantum Opt. 3, 13 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    D. F. Walls and G. J. Milburn, Quantum Optics, 2nd ed. (Springer, Berlin, Heidelberg, 2008), Chap. 11, p. 215.CrossRefMATHGoogle Scholar
  15. 15.
    H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999), Chap. 4, p. 101.CrossRefGoogle Scholar
  16. 16.
    W. Zurek, Rev. Mod. Phys. 75, 715 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf, Nat. Phys. 5, 105 (2009).CrossRefGoogle Scholar
  18. 18.
    H. J. Carmichael, Statistical Methods in Quantum Optics 2 (Springer, Berlin, 2008), Chap. 16.CrossRefMATHGoogle Scholar
  19. 19.
    L. S. Bishop, E. Ginossar, and S. M. Girvin, Phys. Rev. Lett. 105, 100505 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    J. Koch, M. Yu. Terri, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A 79, 013819 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    G. P. Agrawal and H. J. Carmichael, Phys. Rev. A 19, 2074 (1979).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Bonifacio, M. Gronchi, and L. A. Lugiato, Phys. Rev. A 18, 2266 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    M. I. Bolotov, L. A. Smirnov, G. V. Osipov, and A. Pikovsky, JETP Lett. 106 (6) (2017).Google Scholar
  26. 26.
    M. J. Panaggio and D. M. Abrams, Nonlinearity 28, R67 (2015).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations