Structural transitions in elemental tin at ultra high pressures up to 230 GPa

  • A. G. Gavriliuk
  • I. A. Troyan
  • A. G. Ivanova
  • S. N. Aksenov
  • S. S. Starchikov
  • I. S. Lyubutin
  • W. Morgenroth
  • K. V. Glazyrin
  • M. Mezouar
Article
  • 9 Downloads

Abstract

The crystal structure of elemental Sn was investigated by synchrotron X-ray diffraction at ultra high pressures up to ∼230 GPa creating in diamond anvil cells. Above 70 GPa, a pure bcc structure of Sn was observed, which is stable up to 160GPa, until an occurrence of the hcp phase was revealed. At the onset of the bcc-hcp transition at pressure of about 160GPa, the drop of the unit cell volume is about 1%. A mixture of the bcc-hcp states was observed at least up to 230GPa, and it seems that this state could exist even up to higher pressures. The fractions of the bcc and hcp phases were evaluated in the pressure range of the phase coexistence 160–230 GPa. The difference between static and dynamic compression and its effect on the VP phase diagram of Sn are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Troyan, A. G. Gavriliuk, R. Rüffer, A. Chumakov, A. A. Mironovich, I. S. Lyubutin, D. Perekalin, A. Drozdov, and M. Eremets, Science 351, 1303 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    S. Desgreniers, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 39, 10359 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    A. Salamat, R. Briggs, P. Bouvier, S. Petitgirard, A. Dewaele, M. E. Cutler, F. Cor‘a, D. Daisenberger, G. Garbarino, and P. F. McMillan, Phys. Rev. B 88, 104104 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. Salamat, G. Garbarino, A. Dewaele, P. Bouvier, S. Petitgirard, C. J. Pickard, P. F. McMillan, and M. Mezouar, Phys. Rev. B 2011, 140104(R) (2011).CrossRefGoogle Scholar
  5. 5.
    Q.-M. Jing, Y.-H. Cao, Y. Zhang, Sh.-R. Li, Q.-Y. H. He, Sh.-G. Liu, L. Liu, Y. Bi, H.-Y. Geng, and Q. Wu, Chin. Phys. B 25, 120702 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    B. H. Cheong and K. J. Chang, Phys. Rev. B 44, 4103 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    N. E. Christensen and M. Methfessel, Phys. Rev. B 48, 5797 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    A. Aguado, Phys. Rev. B 67, 212104 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    Ch. Yu, J. Liu, H. Lu, and J. Chen, Sol. State Comm. 140, 538 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    R. G. McQueen and S. P. Marsh, J. Appl. Phys. 31, 1253 (1960).ADSCrossRefGoogle Scholar
  11. 11.
    K. V. Khishchenko, J. Phys.: Conf. Series 121, 022025 (2008).Google Scholar
  12. 12.
    Y. Yao and D. D. Klug, Sol. State Comm. 151, 1899 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Mukherjee, K. D. Joshi, and S. C. Gupta, J. Phys.: Conf. Series 215, 012106 (2010).Google Scholar
  14. 14.
    A. Lazicki, J. R. Rygg, F. Coppari, R. Smith, D. Fratanduono, R. G. Kraus, G. W. Collins, R. Briggs, D. G. Braun, D. C. Swift, and J. H. Eggert, Phys. Rev. B 115, 075502 (2015).Google Scholar
  15. 15.
    J. D. Barnett, V. E. Bean, and H. T. Hall, J. Appl. Phys. 37, 875 (1966).ADSCrossRefGoogle Scholar
  16. 16.
    H. Olijnyk, Phys. Rev. B 46, 6589 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    M. Mezouar, W. A. Crichton, S. Bauchau, F. Thurel, H. Witsch, F. Torrecillas, G. Blattmann, P. Marion, Y. Dabin, J. Chavanne, O. Hignette, C. Morawe, and C. Borel, J. Synchrotron Rad. 12, 659 (2005).CrossRefGoogle Scholar
  18. 18.
    H.-P. Liermann, W. Morgenroth, A. Ehnes, A. Berghauser, B. Winkler, H. Franz, and E. Weckert, J. Phys. Conf. Ser. 215, 012029 (2010).CrossRefGoogle Scholar
  19. 19.
    A. G. Gavriliuk, A. A. Mironovich, and V. V. Struzhkin, Rev. Sci. Instrum. 80, 043906 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Akahama and H. Kawamura, J. Appl. Phys. 100, 043516 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, and V. Prakapenka, PNAS 104, 9182 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    C. Prescher and V. B. Prakapenka, High Pressure Research 35, 223 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. G. Gavriliuk
    • 1
    • 2
    • 3
  • I. A. Troyan
    • 1
    • 2
    • 3
  • A. G. Ivanova
    • 1
    • 2
  • S. N. Aksenov
    • 1
    • 2
  • S. S. Starchikov
    • 1
    • 2
  • I. S. Lyubutin
    • 1
  • W. Morgenroth
    • 4
  • K. V. Glazyrin
    • 5
  • M. Mezouar
    • 6
  1. 1.Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RASMoscowRussia
  2. 2.Institute for Nuclear ResearchRussian Academy of SciencesTroitskRussia
  3. 3.REC “Functional Nanomaterials”Immanuel Kant Baltic Federal UniversityKaliningradRussia
  4. 4.Institut fur GeowissenschaftenGoethe-UniversitätFrankfurt am MainGermany
  5. 5.Deutsches Elektronen-Synchrotron DESYPhoton ScienceHamburgGermany
  6. 6.European Synchrotron Radiation FacilityCS40220GrenobleFrance

Personalised recommendations