Advertisement

JETP Letters

, Volume 106, Issue 10, pp 659–661 | Cite as

Large-scale flow in two-dimensional turbulence at static pumping

  • I. V. Kolokolov
  • V. V. Lebedev
Plasma, Hydro- and Gas Dynamics

Abstract

Two-dimensional turbulence has the striking tendency to self-organize into large-scale, coherent structures due to the inverse energy cascade. Here, we theoretically examine the case of a static pumping where the exciting force is independent of time; the case corresponds to the usual experimental setup. We establish dependence of the large-scale flow on the system parameters and the pumping characteristics for an unbound system and for a finite box.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    C. E. Leith, Phys. Fluids 11, 671 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    G. K. Batchelor, Phys. Fluids 12, 233 (1969).CrossRefGoogle Scholar
  4. 4.
    M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 99, 084501 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    J. Laurie, G. Boffetta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113, 254593 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    P. Tabeling, Phys. Rep. 362, 1 (2002).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. E. Gledzer, E. B. Gledzer, A. A. Khapaev, and O. G. Chkhetiani, J. Exp. Theor. Phys. 113, 516 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1971; Dover, New York, 2007).zbMATHGoogle Scholar
  10. 10.
    G. Boffetta and R. E. Ecke, Ann. Rev. Fluid Mech. 44, 427 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    J. Sommeria, J. Fluid Mech. 170, 139 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 (1994).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    V. Borue, Phys. Rev. Lett. 72, 1475 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    G. Boffetta, A. Celani, and M. Vergassola, Phys. Rev. E 61, R29 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    G. Falkovich, J. Phys. A: Math. Theor. 42, 123001 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    N. Francois, Y. Xia, H. Punzmann, S. Ramsden, and M. Shats, Phys. Rev. X 4, 021021 (2014).Google Scholar
  19. 19.
    A. Frishman, J. Laurie, and G. Falkovich, Phys. Rev. Fluids 2, 032602 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    I. V. Kolokolov and V. V. Lebedev, JETP Lett. 101, 164 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    I. V. Kolokolov and V. V. Lebedev, Phys. Rev. E 93, 033104 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    I. V. Kolokolov and V. V. Lebedev, J. Fluid Mech. 809, R2–1 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge Univ. Press, Cambridge, 2000), Chap. 11.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations