JETP Letters

, Volume 106, Issue 10, pp 659–661 | Cite as

Large-scale flow in two-dimensional turbulence at static pumping

Plasma, Hydro- and Gas Dynamics

Abstract

Two-dimensional turbulence has the striking tendency to self-organize into large-scale, coherent structures due to the inverse energy cascade. Here, we theoretically examine the case of a static pumping where the exciting force is independent of time; the case corresponds to the usual experimental setup. We establish dependence of the large-scale flow on the system parameters and the pumping characteristics for an unbound system and for a finite box.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    C. E. Leith, Phys. Fluids 11, 671 (1968).CrossRefADSGoogle Scholar
  3. 3.
    G. K. Batchelor, Phys. Fluids 12, 233 (1969).CrossRefGoogle Scholar
  4. 4.
    M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 99, 084501 (2007).CrossRefADSGoogle Scholar
  5. 5.
    H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101 (2009).CrossRefADSGoogle Scholar
  6. 6.
    J. Laurie, G. Boffetta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113, 254593 (2014).CrossRefADSGoogle Scholar
  7. 7.
    P. Tabeling, Phys. Rep. 362, 1 (2002).MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    A. E. Gledzer, E. B. Gledzer, A. A. Khapaev, and O. G. Chkhetiani, J. Exp. Theor. Phys. 113, 516 (2011).CrossRefADSGoogle Scholar
  9. 9.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1971; Dover, New York, 2007).MATHGoogle Scholar
  10. 10.
    G. Boffetta and R. E. Ecke, Ann. Rev. Fluid Mech. 44, 427 (2012).CrossRefADSGoogle Scholar
  11. 11.
    R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547 (1980).CrossRefADSGoogle Scholar
  12. 12.
    J. Sommeria, J. Fluid Mech. 170, 139 (1986).CrossRefADSGoogle Scholar
  13. 13.
    L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 (1993).CrossRefADSGoogle Scholar
  14. 14.
    L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 (1994).MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    V. Borue, Phys. Rev. Lett. 72, 1475 (1994).CrossRefADSGoogle Scholar
  16. 16.
    G. Boffetta, A. Celani, and M. Vergassola, Phys. Rev. E 61, R29 (2000).CrossRefADSGoogle Scholar
  17. 17.
    G. Falkovich, J. Phys. A: Math. Theor. 42, 123001 (2009).MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    N. Francois, Y. Xia, H. Punzmann, S. Ramsden, and M. Shats, Phys. Rev. X 4, 021021 (2014).Google Scholar
  19. 19.
    A. Frishman, J. Laurie, and G. Falkovich, Phys. Rev. Fluids 2, 032602 (2017).CrossRefADSGoogle Scholar
  20. 20.
    I. V. Kolokolov and V. V. Lebedev, JETP Lett. 101, 164 (2015).CrossRefADSGoogle Scholar
  21. 21.
    I. V. Kolokolov and V. V. Lebedev, Phys. Rev. E 93, 033104 (2016).CrossRefADSGoogle Scholar
  22. 22.
    I. V. Kolokolov and V. V. Lebedev, J. Fluid Mech. 809, R2–1 (2016).CrossRefADSGoogle Scholar
  23. 23.
    E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge Univ. Press, Cambridge, 2000), Chap. 11.CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations