Microstructural properties and evolution of nanoclusters in liquid Si during rapid cooling process

Article
  • 1 Downloads

Abstract

The formation of amorphous structures in Si during the rapid quenching process was studied based on molecular dynamics simulation by using the Stillinger–Weber potential. The evolution characteristics of nanoclusters during the solidification were analyzed by several structural analysis methods. The amorphous Si has been formed with many tetrahedral clusters and few nanoclusters. During the solidification, tetrahedral polyhedrons affect the local structures by their different positions and connection modes. The main kinds of polyhedrons randomly linked with one another to form an amorphous network structures in the system. The structural evolution of crystal nanocluster demonstrates that the nanocluster has difficulty to growth because of the high cooling rate of 1012 K/s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. J. Treacy and K.B. Borisenko, Science 335, 950 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    P. L. Tereshchuk, Z.M. Khakimov, F. T. Umarova, and M. T. Swihart, Phys. Rev. B 76, 125418 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    Z. Liu, J. Wen, T. Zhou, Ch. Xue, Yu. Zuo, Ch. Li, B. Cheng, and Q. Wang, Thin Solid Films 597, 39 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    K.O. Hara, C.T. Trinh, Y. Kurokawa, K. Arimoto, J. Yamanaka, K. Nakagawa, and N. Usami, Thin Solid Films 636, 546 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    H. Sun, H.-Ch. Wu, Sh.-Ch. Chen, C.-W. Ma, and L.X. Wang, Nanoscale Research Lett. 12(1), 224 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    X. Chen, B.H. Jia, J.K. Saha, B.Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z.R. Shi, and M. Gu, Nano Lett. 12(5), 2187 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54, 1392 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    I. ˇStich,_R. Car, and M. Parrinello, Phys. Rev. B 44, 11092 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    R. Biswas, B.C. Pan, and Y.Y. Ye, Phys. Rev. Lett. 88, 205502 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    M. M. J. Treacy and K.B. Borisenko, Science 335, 950 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. Pedersen, L. Pizzagalli, and H. Jónsson, New J. Phys 19, 063018 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    M. J. Cliffe, A.P. Bartók, R.N. Kerber, C.P. Grey, G. Csányi, and A. L. Goodwin, Phys. Rev. B 95, 224108 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    J. Tersoff, Phys. Rev. B 38, 9902 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    R. Biswas and D.R. Hamann, Phys. Rev. B 36, 6434 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    B. P. Feuston, R. K. Kalia, and P. Vashishta, Phys. Rev. B 35, 6222 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    M. Ishimaru, K. Yoshida, and T. Motooka, Phys. Rev. B 53, 7176 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    J. Bernal, Nature 183(17), 141 (1959).ADSCrossRefGoogle Scholar
  20. 20.
    J. D. Honeycutt and H.C. Anderson, J. Phys. Chem. 91(19), 4950 (1987).CrossRefGoogle Scholar
  21. 21.
    R. S. Liu, K. J. Dong, and Z. A. Tian, J. Phys.: Condens. Matter 19(19), 196103 (2007).ADSGoogle Scholar
  22. 22.
    R. S. Liu, K. J. Dong, and J. Y. Li, J. Non-Cryst. Solids 351(6–7), 612 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    J. L. Finney, Proc. R. Soc. London, Ser. A 319, 479 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    H. W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Nature (London) 439, 419 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    G.R. Chen, C. Song, J. Xu, D.Q. Wang, L. Xu, and Z.Y. Ma, Acta Physica Sinica 59(8), 5681 (2010).Google Scholar
  26. 26.
    S. Munetoh, P.X. Yan, T. Ogata, T. Motooka, and R. Teranishi, Transactions of the Iron & Steel Institute of Japan 50(12), 1925 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Maruyama and K. Teshima, The Japan Society of Mechanical Engineers 2002, 31 (2002).Google Scholar
  28. 28.
    I.H. Lee and K. J. Chang, Phys. Rev. B Condens. Matter 50(24), 18083 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    D.A. Drabold, P.A. Fedders, O. F. Sankey, and J.D. Dow, Phys. Rev. B Condens. Matter 42(8), 5135 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    A.E. Galashev, V.A. Polukhin, I. A. Izmodenov, and O. R. Rakhmanova, Glass Phys. Chem. 33(1), 86 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Plimpton, J. Comput. Phys. 117(1), 1 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Guizhou Provincial Key Laboratory of Public Big Data, Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information EngineeringGuizhou UniversityGuiyangChina

Personalised recommendations