JETP Letters

, Volume 106, Issue 10, pp 667–671 | Cite as

Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process

  • T. Gao
  • X. Hu
  • Y. Li
  • Z. Tian
  • Q. Xie
  • Q. Chen
  • Y. Liang
  • X. Luo
  • L. Ren
  • J. Luo
Condensed Matter
  • 18 Downloads

Abstract

The formation of amorphous structures in Si during the rapid quenching process was studied based on molecular dynamics simulation by using the Stillinger–Weber potential. The evolution characteristics of nanoclusters during the solidification were analyzed by several structural analysis methods. The amorphous Si has been formed with many tetrahedral clusters and few nanoclusters. During the solidification, tetrahedral polyhedrons affect the local structures by their different positions and connection modes. The main kinds of polyhedrons randomly linked with one another to form an amorphous network structures in the system. The structural evolution of crystal nanocluster demonstrates that the nanocluster has difficulty to growth because of the high cooling rate of 1012 K/s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. J. Treacy and K. B. Borisenko, Science 335, 950 (2012).CrossRefADSGoogle Scholar
  2. 2.
    P. L. Tereshchuk, Z. M. Khakimov, F. T. Umarova, and M. T. Swihart, Phys. Rev. B 76, 125418 (2007).CrossRefADSGoogle Scholar
  3. 3.
    Z. Liu, J. Wen, T. Zhou, Ch. Xue, Yu. Zuo, Ch. Li, B. Cheng, and Q. Wang, Thin Solid Films 597, 39 (2015).CrossRefADSGoogle Scholar
  4. 4.
    K. O. Hara, C. T. Trinh, Y. Kurokawa, K. Arimoto, J. Yamanaka, K. Nakagawa, and N. Usami, Thin Solid Films 636, 546 (2017).CrossRefADSGoogle Scholar
  5. 5.
    H. Sun, H.-Ch. Wu, Sh.-Ch. Chen, C.-W. Ma, and L. X. Wang, Nanoscale Res. Lett. 12, 224 (2017).CrossRefADSGoogle Scholar
  6. 6.
    X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).CrossRefADSGoogle Scholar
  7. 7.
    F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54, 1392 (1985).CrossRefADSGoogle Scholar
  8. 8.
    I. Štich, R. Car, and M. Parrinello, Phys. Rev. B 44, 11092 (1991).CrossRefADSGoogle Scholar
  9. 9.
    R. Biswas, B. C. Pan, and Y. Y. Ye, Phys. Rev. Lett. 88, 205502 (2002).CrossRefADSGoogle Scholar
  10. 10.
    M. M. J. Treacy and K. B. Borisenko, Science 335, 950 (2012).CrossRefADSGoogle Scholar
  11. 11.
    A. Pedersen, L. Pizzagalli, and H. Jónsson, New J. Phys. 19, 063018 (2017).CrossRefADSGoogle Scholar
  12. 12.
    M. J. Cliffe, A. P. Bartók, R. N. Kerber, C. P. Grey, G. Csányi, and A. L. Goodwin, Phys. Rev. B 95, 224108 (2017).CrossRefADSGoogle Scholar
  13. 13.
    F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).CrossRefADSGoogle Scholar
  14. 14.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).CrossRefADSGoogle Scholar
  15. 15.
    J. Tersoff, Phys. Rev. B 38, 9902 (1988).CrossRefADSGoogle Scholar
  16. 16.
    R. Biswas and D. R. Hamann, Phys. Rev. B 36, 6434 (1987).CrossRefADSGoogle Scholar
  17. 17.
    B. P. Feuston, R. K. Kalia, and P. Vashishta, Phys. Rev. B 35, 6222 (1987).CrossRefADSGoogle Scholar
  18. 18.
    M. Ishimaru, K. Yoshida, and T. Motooka, Phys. Rev. B 53, 7176 (1996).CrossRefADSGoogle Scholar
  19. 19.
    J. Bernal, Nature 183 (17), 141 (1959).CrossRefADSGoogle Scholar
  20. 20.
    J. D. Honeycutt and H. C. Anderson, J. Phys. Chem. 91, 4950 (1987).CrossRefGoogle Scholar
  21. 21.
    R. S. Liu, K. J. Dong, and Z. A. Tian, J. Phys.: Condens. Matter 19, 196103 (2007).ADSGoogle Scholar
  22. 22.
    R. S. Liu, K. J. Dong, and J. Y. Li, J. Non-Cryst. Solids 351, 612 (2005).CrossRefADSGoogle Scholar
  23. 23.
    J. L. Finney, Proc. R. Soc. London, Ser. A 319, 479 (1970).CrossRefADSGoogle Scholar
  24. 24.
    H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, Nature (London) 439, 419 (2006).CrossRefADSGoogle Scholar
  25. 25.
    G. R. Chen, C. Song, J. Xu, D. Q. Wang, L. Xu, and Z. Y. Ma, Acta Phys. Sin. 59, 5681 (2010).Google Scholar
  26. 26.
    S. Munetoh, P. X. Yan, T. Ogata, T. Motooka, and R. Teranishi, Trans. Iron Steel Inst. Jpn. 50, 1925 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Maruyama and K. Teshima, Jpn. Soc. Mech. Eng. 2002, 31 (2002).Google Scholar
  28. 28.
    I. H. Lee and K. J. Chang, Phys. Rev. B 50, 18083 (1994).CrossRefADSGoogle Scholar
  29. 29.
    D. A. Drabold, P. A. Fedders, O. F. Sankey, and J. D. Dow, Phys. Rev. B 42, 5135 (1990).CrossRefADSGoogle Scholar
  30. 30.
    A. E. Galashev, V. A. Polukhin, I. A. Izmodenov, and O. R. Rakhmanova, Glass Phys. Chem. 33, 86 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • T. Gao
    • 1
  • X. Hu
    • 1
  • Y. Li
    • 1
  • Z. Tian
    • 1
  • Q. Xie
    • 1
  • Q. Chen
    • 1
  • Y. Liang
    • 1
  • X. Luo
    • 1
  • L. Ren
    • 1
  • J. Luo
    • 1
  1. 1.Guizhou Provincial Key Laboratory of Public Big Data, Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information EngineeringGuizhou UniversityGuiyangPeople’s Republic of China

Personalised recommendations