Advertisement

JETP Letters

, Volume 106, Issue 8, pp 517–521 | Cite as

X-ray reflectivity and photoelectron spectroscopy of superlattices with silicon nanocrystals

  • D. M. ZhigunovEmail author
  • I. A. Kamenskikh
  • A. M. Lebedev
  • R. G. Chumakov
  • Yu. A. Logachev
  • S. N. Yakunin
  • P. K. Kashkarov
Condensed Matter

Abstract

The structural properties and features of the chemical composition of SiO x N y /SiO2, SiO x N y /Si3N4, and SiN x /Si3N4 multilayer thin films with ultrathin (1–1.5 nm) barrier SiO2 or Si3N4 layers are studied. The films have been prepared by plasma chemical vapor deposition and have been annealed at a temperature of 1150°С for the formation of silicon nanocrystals in the SiO x N y or SiN x silicon-rich layers with a nominal thickness of 5 nm. The period of superlattices in the studied samples has been estimated by X-ray reflectivity. The phase composition of superlattices has been studied by X-ray electron spectroscopy using the decomposition of photoelectron spectra of the Si 2p, N 1s, and O 1s levels into components corresponding to different charge states of atoms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Kul’bachinskii, Two-, One-, and Zero-Dimensional Structures and Superlattices (Mosk. Gos. Univ., Moscow, 1998) [in Russian].Google Scholar
  3. 3.
    D. M. Zhigunov, A. Sarikov, Yu. M. Chesnokov, A. L. Vasiliev, N. Zakharov, and P. K. Kashkarov, Appl. Phys. Lett. 108, 223102 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    A. Zelenina, S. A. Dyakov, D. Hiller, S. Gutsch, V. Trouillet, M. Bruns, S. Mirabella, P. Löper, L. López-Conesa, J. López-Vidrier, S. Estradé, F. Peiró, B. Garrido, J. Bläsing, A. Krost, D. M. Zhigunov, and M. Zacharias, J. Appl. Phys. 114, 184311 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Hartel, D. Hiller, S. Gutsch, P. Löper, S. Estradé, F. Peiró, B. Garrido, and M. Zacharias, Thin Solid Films 520, 121 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. Zelenina, A. Sarikov, S. Gutsch, N. D. Zakharov, P. Werner, A. Reichert, Ch. Weiss, and M. Zacharias, J. Appl. Phys. 117, 175303 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Zhigunov, M. N. Martyshov, P. A. Forsh, I. A. Kamenskikh, S. N. Yakunin, and P. K. Kashkarov, Phys. Status Solidi A 214, 1700040 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    M. Molinari, H. Rinnert, M. Vergnat, and P. Weisbecker, Mater. Sci. Eng. B 101, 186 (2003).CrossRefGoogle Scholar
  9. 9.
    X. J. Hao, E.-C. Cho, G. Scardera, E. Bellet-Amalric, D. Bellet, Y. S. Shen, S. Huang, Y. D. Huang, G. Conibeer, and M. A. Green, Thin Solid Films 517, 5646 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    X. Zeng, W. Liao, G. Wen, X. Wen, and W. Zheng, J. Appl. Phys. 115, 154314 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    A. Thogersen, S. Diplas, J. Mayandi, T. Finstad, A.Olsen, J. F. Watts, M. Mitome, and Y. Bando, J. Appl. Phys. 103, 024308 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    J. Barbé, K. Makasheva, S. Perraud, M. Carrada, and B. Despax, J. Phys. D: Appl. Phys. 47, 255302 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. Rodriguez-Gómez, L. Escobar-Alarcón, R. Serna, F. Cabello, E. Haro-Poniatowski, A. Garcia-Valenzuela, and J. C. Alonso, J. Appl. Phys. 20, 145305 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    J. R. Shallenberger, D. A. Cole, and S. W. Novak, J. Vac. Sci. Technol. A 17, 1086 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • D. M. Zhigunov
    • 1
    Email author
  • I. A. Kamenskikh
    • 1
  • A. M. Lebedev
    • 2
  • R. G. Chumakov
    • 2
  • Yu. A. Logachev
    • 1
  • S. N. Yakunin
    • 2
  • P. K. Kashkarov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations