Skip to main content
Log in

Two-dimensional electron gas at the interface of Ba0.8Sr0.2TiO3 ferroelectric and LaMnO3 antiferomagnet

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The temperature dependence of the electrical resistance has been studied for heterostructures formed by antiferromagnetic LaMnO3 single crystals of different orientations with epitaxial films of ferroelectric Ba0.8Sr0.2TiO3 deposited onto them. The measured electrical resistance is compared to that exhibited by LaMnO3 single crystals without the films. It is found that, in the samples with the film, for which the axis of polarization in the ferroelectric is directed along the perpendicular to the surface of the single crystal, the electrical resistance decreases significantly with temperature, exhibiting metallic behavior below 160 K. The numerical simulations of the structural and electronic characteristics of the BaTiO3/LaMnO3 ferroelectric−antiferromagnet heterostructure has been performed. The transition to the state with two-dimensional electron gas at the interface is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004); Nat. Mater. 5, 204 (2006).

    Article  ADS  Google Scholar 

  2. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).

    Article  ADS  Google Scholar 

  3. N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).

    Article  ADS  Google Scholar 

  4. A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).

    Article  ADS  Google Scholar 

  5. A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, and D. Winkler, Phys. Rev. B 75, 121404 (2007).

    Article  ADS  Google Scholar 

  6. W. Chen, L. Li, J. Qi, Y. Wang, and Z. Gui, J. Am. Ceram. Soc. 81, 2751 (1998).

    Article  Google Scholar 

  7. P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, Ch. G. van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 99, 232116 (2011).

    Article  ADS  Google Scholar 

  8. C. A. Jackson and S. Stemmer, Phys. Rev. B 88, 180403 (2013).

    Article  ADS  Google Scholar 

  9. J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, Nat. Commun. 1, 89 (2010).

    Article  ADS  Google Scholar 

  10. A. Annadi, A. Putra, Z. Q. Liu, X. Wang, K. Gopinadhan, Z. Huang, S. Dhar, T. Venkatesan, and Ariando, Phys. Rev. B 86, 085450 (2012).

    Article  ADS  Google Scholar 

  11. P. Perna, D. Maccariello, M. Radovic, U. Scotti di Uccio, I. Pallecchi, M. Codda, D. Marré, C. Cantoni, M. Varela, S. J. Pennycook, and F. M. Granozio, Appl. Phys. Lett. 97, 152111 (2010).

    Article  ADS  Google Scholar 

  12. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  13. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  14. A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, S. P. Lebedev, A. Pimenov, A. Loidl, and A. M. Balbashov, JETP Lett. 68, 356 (1998).

    Article  ADS  Google Scholar 

  15. Yu. I. Golovko, V. M. Mukhortov, Yu. I. Yuzyuk, P. E. Janolin, and B. Dkhil, Phys. Solid State 50, 485 (2008).

    Article  ADS  Google Scholar 

  16. A. S. Sigov, E. D. Mishina, and V. M. Mukhortov, Phys. Solid State 52, 762 (2010).

    Article  Google Scholar 

  17. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  19. MedeAAM-2.20 (Materials Design, Inc., San Diego, CA, 2015).

  20. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  21. I. I. Piyanzina, T. Kopp, Yu. V. Lysogosrkiy, D. Tayurskii, and V. Eyert, J. Phys.: Condens. Matter 29, 095501 (2017).

    ADS  Google Scholar 

  22. J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A. H. Moudden, L. Pinsard, and A. Revcolevschi, Phys. Rev. B 57, R3189 (1998).

    Article  ADS  Google Scholar 

  23. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Mamin.

Additional information

Original Russian Text © D.P. Pavlov, I.I. Piyanzina, V.M. Mukhortov, A.M. Balbashov, D.A. Tayurskii, I.A. Garifullin, R.F. Mamin, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 7, pp. 440–444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, D.P., Piyanzina, I.I., Mukhortov, V.M. et al. Two-dimensional electron gas at the interface of Ba0.8Sr0.2TiO3 ferroelectric and LaMnO3 antiferomagnet. Jetp Lett. 106, 460–464 (2017). https://doi.org/10.1134/S0021364017190109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017190109

Navigation