Skip to main content
Log in

Giant magnetoresistance of PbSnTe:In films in the space-charge-limited current regime: Angular features and effect of the surface

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In the space-charge-limited current regime at T = 4.2 K, the magnetoresistance of PbSnTe:In/(111)BaF2 films has been studied at various mutual orientation of the magnetic field B (up to 4 T), electric field E (up to ~103 V/cm), and normal to the surface n. At Bn, the reduction of the current reaches a factor of ~105, whereas at BE, the current increases by a factor of ~103. The angular dependences of the magnetoresistance have been studied at the “rotation” of B in three different planes. The angular dependences of the magnetoresistance for the plane corresponding to the orientation BE exhibit local maxima near the orientations Bn, at which charge carriers are deflected by the magnetic field to one of the boundaries of the film. At the deviation to the free surface, the half-width of maxima is several degrees. At the deviation to the interface with the substrate, the half-width of maxima is about an order of magnitude larger and their amplitude is one or two orders of magnitude smaller. Possible mechanisms of giant positive and negative magnetoresistance, as well as the effect of the boundaries of the film on the angular dependences of the magnetoresistance, have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Kaidanov and Yu. I. Ravich, Sov. Phys. Usp. 28, 31 (1985).

    Article  ADS  Google Scholar 

  2. B. A. Akimov, V. P. Zlomanov, L. I. Ryabova, and D. R. Khokhlov, Vysokochist. Veshchestva 6, 22 (1991).

    Google Scholar 

  3. B. A. Volkov, L. I. Ryabova, and D. R. Khokhlov, Phys. Usp. 45, 819 (2002).

    Article  ADS  Google Scholar 

  4. M. A. Lampert and P. Mark, Current Injection in Solids (Wiley, New York, 1973).

    Google Scholar 

  5. V. L. Volkov, V. I. Litvinov, V. M. Baginskii, and K. D. Tovstyuk, Solid State Commun. 20, 807 (1976).

    Article  ADS  Google Scholar 

  6. V. D. Prozorovskii, Sov. Phys. Semicond. 17, 1361 (1983).

    Google Scholar 

  7. A. Klimov, V. Sherstyakova, and V. Shumsky, Ferroelectrics 378, 101 (2009).

    Article  Google Scholar 

  8. B. A. Akimov, A. V. Nikorich, D. R. Khokhlov, and S. N. Chesnokov, Sov. Phys. Semicond. 23, 418 (1989).

    Google Scholar 

  9. V. S. Vinogradov and I. V. Kucherenko, Sov. Phys. Solid State 33, 1453 (1991).

    Google Scholar 

  10. A. N. Akimov, V. G. Erkov, A. E. Klimov, E. L. Molodtsova, S. P. Suprun, and V. N. Shumsky, Semiconductors 39, 533 (2005).

    Article  ADS  Google Scholar 

  11. A. N. Akimov, A. V. Belenchuk, V. G. Erkov, A. E. Klimov, I. G. Neizvestnyi, O. M. Shapoval, and V. N. Shumskyi, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 1, 711 (2007).

    Article  Google Scholar 

  12. T. Suski, M. Konczykowski, M. Leszczyhski, D. Lesueur, and J. Dural, J. Phys. C: Solid State Phys. 15, L953 (1982).

    Article  ADS  Google Scholar 

  13. S. Takaoka and K. Murase, Phys. Rev. B 20, 2823 (1979).

    Article  ADS  Google Scholar 

  14. R. A. Nasybbulin, Ya. N. Girshberg, N. N. Trunov, R. Kh. Kalimullin, A. A. Kukharskii, Yu. S. Kharionovskii, V. V. Shapkin, and E. V. Bursian, Sov. Phys. Solid State 25, 448 (1983).

    Google Scholar 

  15. B. A. Akimov, V. V. Borshchevskii, N. B. Brandt, and Yu. A. Pirogov, Sov. Phys. Solid State 32, 154 (1990).

    Google Scholar 

  16. A. Klimov, V. Shumsky, and V. Kubarev, Ferroelectrics 347, 111 (2007).

    Article  Google Scholar 

  17. T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat. Commun. 3, 982 (2012).

    Article  ADS  Google Scholar 

  18. S.-Y. Xu, C. Liu, N. Alidoust, et al., Nat. Commun. 3, 1192 (2012).

    Article  Google Scholar 

  19. C. Yan, J. Liu, Y. Zang, J. Wang, Z. Wang, P. Wang, Z.HD. Zhang, L. Wang, X. Ma, S. Ji, K. He, L. Fu, W. Duan, Q.-K. Xue, and X. Chen, Phys. Rev. Lett. 112, 186801-1 (2014).

    Google Scholar 

  20. E. Xu, Z. Li, J. A. Acosta, N. Li, B. Swartzentruber, S.HJ. Zheng, N. Sinitsyn, H. Htoon, J. Wang, and S. Zhang, Nano Res. (2015). doi 10.1007/s12274-015- 0961-1

    Google Scholar 

  21. B. Assaf, T. Phuphachong, V. Volobuev, A. Inhofer, G. Bauer, G. Springholz, L. A. de Vaulchier, and Y. Guldner, Sci. Rep. 6, 20323 (2016).

    Article  ADS  Google Scholar 

  22. V. V. Volobuev, P. S. Mandal, M. Galicka, O. Caha, J. Sänchez-Barriga, D. di Sante, A. Varykhalov, A. Khiar, S. Picozzi, G. Bauer, P. Kacman, R. Buczko, O. Rader, and G. Springholz, Adv. Mater. 29, 1604185 (2017).

    Article  Google Scholar 

  23. B. A. Assaf, T. Phuphachong, V. V. Volobuev, G. Bauer, G. Springholz, L.-A. de Vaulchier, and Y. Guldner, Quantum Mater. 2, 26 (2017).

    Article  Google Scholar 

  24. E. V. Fedosenko, A. E. Klimov, D. V. Krivopalov, I. G. Neizvestny, N. I. Petikov, M. A. Torlin, and V. N. Shumsky, Appl. Surf. Sci. 78, 413 (1994).

    Article  ADS  Google Scholar 

  25. A. E. Klimov and V. N. Shumsky, Phys. B: Condens. Matter 404, 5028 (2009).

    Article  ADS  Google Scholar 

  26. T. Thio, S. A. Solin, J. W. Bennett, and D. R. Hines, Phys. Rev. B 57, 12239 (1998).

    Article  ADS  Google Scholar 

  27. Z. G. Sun, M. Mizuguchi, T. Manago, and H. Akinaga, Appl. Phys. Lett. 85, 5644 (2004).

    ADS  Google Scholar 

  28. J. J. H. M. Schoonus, F. L. Bloom, W. Wagemans, H. J. M. Swagten, and B. Koopmans, Phys. Rev. Lett. 100, 127202 (2008).

    Article  ADS  Google Scholar 

  29. M. P. Delmo, S. Yamamoto, S. Kasai, T. Ono, and K. Kobayashi, Nat. Lett. 457, 1112 (2009).

    Article  ADS  Google Scholar 

  30. S. A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Science 289, 1530 (2000).

    Article  ADS  Google Scholar 

  31. R. G. Mani, A. Kriisa, and W. Wegscheider, Sci. Rep. 3, 2747 (2013).

    Article  ADS  Google Scholar 

  32. Z. Wang, R. L. Samaraweera, C. Reich, W. Wegscheider, and R. G. Mani, Sci. Rep. 6, 38516 (2016).

    Article  ADS  Google Scholar 

  33. S. Jin, M. McCormack, T. H. Tiefel, and R. Ramesh, J. Appl. Phys. 76, 6929 (1994).

    Article  ADS  Google Scholar 

  34. A. E. Klimov and V. S. Epov, Semiconductors 50, 1479 (2016).

    Article  ADS  Google Scholar 

  35. A. E. Kozhanov, A. V. Nikorich, L. I. Ryabova, D. R. Khokhlov, A. V. Dmitriev, and V. Shklover, Semiconductors 41, 663 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Klimov.

Additional information

Original Russian Text © A.E. Klimov, V.S. Epov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 7, pp. 426–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimov, A.E., Epov, V.S. Giant magnetoresistance of PbSnTe:In films in the space-charge-limited current regime: Angular features and effect of the surface. Jetp Lett. 106, 446–453 (2017). https://doi.org/10.1134/S0021364017190092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017190092

Navigation