Unconventional spin-charge phase separation in a model 2D cuprate

  • Yu. D. Panov
  • K. S. Budrin
  • A. A. Chikov
  • A. S. Moskvin
Article

Abstract

In this Letter we address a challenging problem of a competition of charge and spin orders for high-Tc cuprates within a simplified 2D spin-pseudospin model which takes into account both conventional Heisenberg Cu2+-Cu2+ antiferromagnetic spin exchange coupling (J) and the on-site (U) and inter-site (V) charge correlations in the CuO2 planes with the on-site Hilbert space reduced to only three effective charge states (nominally Cu1+;2+;3+). We performed classical Monte-Carlo calculations for large square lattices implying the mobile doped charges and focusing on a case of a small inter-site repulsion VJ. The on-site attraction (U < 0) does suppress the antiferromagnetic ordering and gives rise to a checkerboard charge order with the doped charge distributed randomly over a system in the whole temperature range. However, under the on-site repulsion (U > 0) the homogeneous ground state antiferromagnetic solutions of the doped system found in a mean-field approximation are shown to be unstable with respect to a phase separation with the charge and spin subsystems behaving like immiscible quantum liquids. Puzzlingly, with lowering the temperature one can observe two sequential phase transitions: first, an antiferromagnetic ordering in the spin subsystem diluted by randomly distributed charges, then, a charge condensation in the charge droplets. The effects are illustrated by the Monte-Carlo calculations of the specific heat and longitudinal magnetic susceptibility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fradkin, S.A. Kivelson, and J. M. Tranquada, Rev. Mod. Phys. 87, 457 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Moskvin, Phys. Rev. B 84, 075116 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. S. Moskvin, Low Temp. Phys. 33, 234 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Moskvin, Phys. Rev. B 79, 115102 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    A. S. Moskvin, J. Phys.: Condens. Matter 25, 085601 (2013).ADSGoogle Scholar
  6. 6.
    A. S. Moskvin, J. Phys.: Conf. Ser. 592, 012076 (2015).Google Scholar
  7. 7.
    A. S. Moskvin, J. Supercond. Nov. Magn. 29(4), 1057 (2016).CrossRefGoogle Scholar
  8. 8.
    C. D. Batista and G. Ortiz, Adv. Phys. 53, 1 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    Yu.D. Panov, A. S. Moskvin, A.A. Chikov, and I. L Avvakumov, J. Supercond. Nov. Magn. 29, 1077 (2016).CrossRefGoogle Scholar
  10. 10.
    Yu.D. Panov, A. S. Moskvin, A.A. Chikov, and K. S. Budrin, J. Low Temp. Phys. 187, 646 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    A. S. Moskvin, JETP 148, 549 (2015).Google Scholar
  12. 12.
    K. Kapcia, Acta Phys. Pol. A 127, 204 (2015).CrossRefGoogle Scholar
  13. 13.
    S.V. Semkin and V.P. Smagin, Phys. Solid State 56, 2425 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    P. J. Meyer, Computational Studies of Pure and Dilute Spin Models, [Electronic resours] https://www.hermetic.ch/compsci/thesis/index.html, (Date of downloads 15.05.2015).Google Scholar
  15. 15.
    J. M. Tranquada, B. J. Sternlieb, J.D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • Yu. D. Panov
    • 1
  • K. S. Budrin
    • 1
  • A. A. Chikov
    • 1
  • A. S. Moskvin
    • 1
  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations