JETP Letters

, Volume 106, Issue 5, pp 283–289 | Cite as

Phenomenology of collinear photon emission from quark–gluon plasma in AA collisions

Fields, Particles, and Nuclei
  • 9 Downloads

Abstract

We study the role of running coupling and the effect of variation of the thermal quark mass on contribution of the collinear bremsstrahlung and annihilation to photon emission in AA collisions in a scheme similar to that used in our previous jet quenching analyses. We find that for a scenario with the thermal quark mass mq ∼ 50−100 MeV contribution of the higher order collinear processes summed with the 2 → 2 processes can explain a considerable part (∼50%) of the experimental photon spectrum at kT ∼ 2–3 GeV for Au+Au collisions at \(\sqrt s \)= 0.2 TeV. However, for mq = 300 MeV and for the thermal quark mass predicted by the HTL scheme the theoretical predictions underestimate considerably the experimental spectrum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-P. Blaizot, F. Gelis, J.-F. Liao, L. McLerran, and R. Venugopalan, Nucl. Phys. A 873, 68 (2012); arXiv:1107.5296.ADSCrossRefGoogle Scholar
  2. 2.
    I. M. Dremin and A. V. Leonidov, Phys. Usp. 53, 1123 (2011); arXiv:1006.4603.ADSCrossRefGoogle Scholar
  3. 3.
    E. V. Shuryak, Phys. Lett. B 78, 150 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    B. G. Zakharov, JETP Lett. 93, 683 (2011); arXiv:1105.2028.ADSCrossRefGoogle Scholar
  5. 5.
    B. G. Zakharov, JETP Lett. 96, 616 (2013); arXiv:1210.4148.ADSCrossRefGoogle Scholar
  6. 6.
    B. G. Zakharov, J. Phys. G 40, 085003 (2013); arXiv:1304.5742.ADSCrossRefGoogle Scholar
  7. 7.
    B. G. Zakharov, J. Phys. G 41, 075008 (2014); arXiv:1311.1159.ADSCrossRefGoogle Scholar
  8. 8.
    K. C. Zapp, F. Krauss, and U. A. Wiedemann, J. High Energy Phys. 1303, 080 (2013); arXiv:1212.1599.ADSCrossRefGoogle Scholar
  9. 9.
    J. Xu, A. Buzzatti, and M. Gyulassy, J. High Energy Phys. 1408, 063 (2014); arXiv:1402.2956.ADSCrossRefGoogle Scholar
  10. 10.
    J.-F. Paquet, C. Shen, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 93, 044906 (2016); arXiv:1509.06738.ADSCrossRefGoogle Scholar
  11. 11.
    A. Adare, C. Aidala, N. N. Ajitanand, et al. (PHENIX Collab.), Phys. Rev. C 91, 064904 (2015); arXiv:1405.3940.ADSCrossRefGoogle Scholar
  12. 12.
    G. Basar, D. Kharzeev, and V. Skokov, Phys. Rev. Lett. 109, 202303 (2012); arXiv:1206. 1334.ADSCrossRefGoogle Scholar
  13. 13.
    K. Tuchin, Phys. Rev. C 91, 014902 (2015); arXiv:1406.5097.ADSCrossRefGoogle Scholar
  14. 14.
    B. G. Zakharov, Eur. Phys. J. C 76, 109 (2016); arXiv:1609.04324.CrossRefGoogle Scholar
  15. 15.
    B. G. Zakharov, Phys. Lett. B 737, 262 (2014); arXiv:1404. 5047.ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Goloviznin, A. M. Snigirev, and G. M. Zinovjev, JETP Lett. 98, 61 (2013); arXiv:1209.2380.ADSCrossRefGoogle Scholar
  17. 17.
    M. Chiu, T. K. Hemmick, V. Khachatryan, A. Leonidov, J. Liao, and L. McLerran, Nucl. Phys. A 900, 16 (2013); arXiv:1202.3679.ADSCrossRefGoogle Scholar
  18. 18.
    I. Dremin, M. Kirakosyan, and A. Leonidov, Adv. High Energy Phys. 2013, 706521 (2013); arXiv:1305.3812.CrossRefGoogle Scholar
  19. 19.
    J. Berges, K. Reygers, N. Tanji, and R. Venugopalan, Phys. Rev. C 95, 054904 (2017); arXiv:1701.05064.ADSCrossRefGoogle Scholar
  20. 20.
    P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 0112, 009 (2001); hep-ph/0111107.ADSCrossRefGoogle Scholar
  21. 21.
    P. Aurenche, F. Gelis, and H. Zaraket, Phys. Rev. D 61, 116001 (2000); hep-ph/9911367.ADSCrossRefGoogle Scholar
  22. 22.
    B. G. Zakharov, JETP Lett. 80, 1 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    M. Gyulassy and X. N. Wang, Nucl. Phys. B 420, 583 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigné, and D. Schiff, Nucl. Phys. B 483, 291 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigné, and D. Schiff, Nucl. Phys. B 484, 265 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    B. G. Zakharov, JETP Lett. 63, 952 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    B. G. Zakharov, JETP Lett. 65, 615 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    B. G. Zakharov, JETP Lett. 70, 176 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    B. G. Zakharov, Phys. At. Nucl. 61, 838 (1998).Google Scholar
  30. 30.
    B. G. Zakharov, JETP Lett. 86, 444 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    B. G. Zakharov, JETP Lett. 88, 781 (2008); arXiv:0811.0445.ADSCrossRefGoogle Scholar
  32. 32.
    P. Lévai and U. Heinz, Phys. Rev. C 57, 1879 (1998); hep-ph/9710463.ADSCrossRefGoogle Scholar
  33. 33.
    H. Nakkagawa, H. Yokota, and K. Yoshida, Phys. Rev. D 85, 031902 (2012); arXiv:1111.0117.ADSCrossRefGoogle Scholar
  34. 34.
    H. Nakkagawa, H. Yokota, and K. Yoshida, Phys. Rev. D 86, 096007 (2012); arXiv:1208.6386.ADSCrossRefGoogle Scholar
  35. 35.
    O. Kaczmarek, F. Karsch, M. Kitazawa, and W. Soldner, Phys. Rev. D 86, 036006 (2012); arXiv:1206.1991.ADSCrossRefGoogle Scholar
  36. 36.
    A. Cucchieri, F. Karsch, and P. Petreczky, Phys. Lett. B 497, 80 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    P. Aurenche and B. G. Zakharov, JETP Lett. 85, 149 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    P. Aurenche, F. Gelis, and H. Zaraket, J. High Energy Phys. 0205, 043 (2002); hep-ph/0204146.ADSCrossRefGoogle Scholar
  39. 39.
    N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607 (1991).CrossRefGoogle Scholar
  40. 40.
    N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 53, 331 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    B. G. Zakharov, JETP Lett. 64, 781 (1996).ADSCrossRefGoogle Scholar
  42. 42.
    O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    J. D. Bjorken, Phys. Rev. D 27, 140 (1983).ADSCrossRefGoogle Scholar
  44. 44.
    S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, J. High Energy Phys. 1011, 077 (2010); arXiv:1007.2580.ADSCrossRefGoogle Scholar
  45. 45.
    D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    B. G. Zakharov, JETP Lett. 104, 6 (2016); arXiv:1605.06012.ADSCrossRefGoogle Scholar
  47. 47.
    B. G. Zakharov, J. Exp. Theor. Phys. (in press); arXiv:1706.03980.Google Scholar
  48. 48.
    S. Turbide, R. Rapp, and C. Gale, Phys. Rev. C 69, 014903 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    T. Lappi, Eur. Phys. J. C 71, 1699 (2011); arXiv:1104.3725.ADSCrossRefGoogle Scholar
  50. 50.
    P. Aurenche and B. G. Zakharov, Phys. Lett. B 718, 937 (2013); arXiv:1205.6462.ADSCrossRefGoogle Scholar
  51. 51.
    B. G. Zakharov, JETP Lett. 73, 49 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations