JETP Letters

, Volume 106, Issue 5, pp 317–323 | Cite as

Phase transitions in FeBO3 under pressure: DFT + DMFT study

  • A. A. Dyachenko
  • A. O. Shorikov
  • V. I. Anisimov
Condensed Matter
  • 55 Downloads

Abstract

We present a theoretical study of spectral, magnetic, and structural properties of the iron borate FeBO3. Within the DFT + DMFT method combining density functional theory with dynamical mean-field theory FeBO3 was investigated under pressures up to 70 GPa at 300 K. We found that FeBO3 is an insulator with a gap of 2.0 eV with antiferromagnetic ordering at ambient pressure in agreement with experiments. In our calculations, we showed that Fe ions in FeBO3 undergo a high-spin to low-spin transition under pressure with change from antiferromagnetic to paramagnetic state, and demonstrate that the spin and magnetic transitions occur simultaneously with an isostructural transition at 50.4 GPa with the volume collapse of 13%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R. T. Scalettar, T. Pruschke, V. I. Anisimov, and D. Vollhardt, Phys. Status Solidi B 243, 2599 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    J. Kuneš, A. V. Lukoyanov, V. I. Anisimov, R. T. Scalettar, and W. E. Pickett, Nat. Mater. 7, 198 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    J. Kuneš, D. M. Korotin, M. A. Korotin, V. I. Anisimov, and P. Werner, Phys. Rev. Lett. 102, 146402 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    A. O. Shorikov, Z. V. Pchelkina, V. I. Anisimov, S. L. Skornyakov, and M. A. Korotin, Phys. Rev. B 82, 195101 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Dyachenko, A. O. Shorikov, A. V. Lukoyanov, and V. I. Anisimov, JETP Lett. 96, 56 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. O. Shorikov, A. V. Lukoyanov, V. I. Anisimov, and S. Y. Savrasov, Phys. Rev. B 92, 035125 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    R. Wolfe, A. J. Kurtzig, and R. C. LeCraw, J. Appl. Phys. 41, 1218 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    I. S. Edelman, A. V. Malakhovskii, T. I. Vasil’eva, and V. N. Seleznev, Sov. Phys. Solid State 14, 24442 (1972).Google Scholar
  9. 9.
    A. G. Gavriliuk, I. A. Trojan, S. G. Ovchinnikov, I. S. Lyubutin, and V. A. Sarkisyan, JETP 99, 566 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    I. A. Troyan, A. G. Gavrilyuk, V. A. Sarkisyan, I. S. Lyubutin, R. Rüffer, O. Leupold, A. Barla, B. Doyle, and A. I. Chumakov, JETP Lett. 74, 24 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Troyan, M. I. Eremets, A. G. Gavrilyuk, I. S. Lyubutin, and V. A. Sarkisyan, JETP Lett. 78, 13 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    V. A. Sarkisyan, I. A. Troyan, I. S. Lyubutin, A. G. Gavrilyuk, and A. F. Kashuba, JETP Lett. 76, 664 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    J. Kim, V. V. Struzhkin, S. G. Ovchinnikov, Y. Orlov, Y. Shvyd’ko, M. H. Upton, D. Casa, A. G. Gavriliuk, and S. V. Sinogeikin, Europhys. Lett. 108, 37001 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    A. G. Gavriliuk, I. A. Trojan, R. Boehler, M. Eremets, A. Zerr, I. S. Lyubutin, and V. A. Sarkisyan, JETP Lett. 75, 23 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Postnikov, S. Bartkowski, M. Neumann, R. A. Rupp, E. Z. Kurmaev, S. N. Shamin, and V. V. Fedorenko, Phys. Rev. B 50, 14849 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    K. Parlinski, Eur. Phys. J. B 27, 283 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    S. Shang, Y. Wang, Z.-K. Liu, C.-E. Yang, and S. Yin, Appl. Phys. Lett. 91, 253115 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    S. G. Ovchinnikov, B. A. Gizhevskii, N. V. Kazak, V. V. Rudenko, and A. V. Telegin, JETP Lett. 90, 519 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    J. Kim, Y. Shvyd’ko, and S. G. Ovchinnikov, Phys. Rev. B 83, 235109 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  22. 22.
    G. H. Wannier, Phys. Rev. 52, 191 (1937).ADSCrossRefGoogle Scholar
  23. 23.
    N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    D. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, Eur. Phys. J. B 65, 91 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    R. Diehl, Solid State Commun. 17, 743 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari, Phys. Rev. Lett. 97, 103001 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    M. Korotin, T. Fujiwara, and V. Anisimov, Phys. Rev. B 62, 5696 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    http://www.amulet-code.org.Google Scholar
  29. 29.
    P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    A. Albuquerque, F. Alet, P. Corboz, et al., J. Magn. Magn. Mater. 310, 1187 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    K. S. D. Beach, R. J. Gooding, and F. Marsiglio, Phys. Rev. B 61, 5147 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    S. G. Ovchinnikov and V. N. Zabluda, J. Exp. Theor. Phys. 98, 135 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    N. B. Ivanova, V. V. Rudenko, A. D. Balaev, N. V. Kazak, V. V. Markov, S. G. Ovchinnikov, I. S. Edelman, A. S. Fedorov, and P. V. Avramov, J. Exp. Theor. Phys. 94, 299 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan, Phys. Rev. Lett. 96, 066402 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    F. Birch, Phys. Rev. 71, 809 (1947).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. A. Dyachenko
    • 1
  • A. O. Shorikov
    • 1
    • 2
  • V. I. Anisimov
    • 1
    • 2
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations