Skip to main content
Log in

Initiation of dusty structures in chain reactions under the action of gyrotron radiation on a mixture of metal and dielectric powders with an open boundary

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A dusty plasma formed in chain exothermal reactions initiated by radiation of a high-power gyrotron in mixtures of metal and dielectric powders has been described. An oscillatory character of such chain reactions, as well as the appearance of dust particles at the first (explosive) stage, has been detected. The tracks, velocities, and sizes of dust particles have been measured. It has been revealed that ensembles of dust particles appear in a reactor after switching-off of the gyrotron against the background of development of chemical reactions. The time of existence of these ensembles is three or four orders of magnitude larger than the duration of a microwave radiation pulse. The quasistationary state of the low-temperature plasma with charged macroparticles appears because of both the chemical heating of the mixture in the reactor and thermophoresis. It has been shown that dust particles are necessary as crystallization nuclei for the creation (or deposition) of complex composites of nano- and micromaterials produced in secondary plasma chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, et al., J. Nanoelectron. Optoelectron. 8, 58 (2013).

    Article  Google Scholar 

  2. G. M. Batanov, L. V. Kolik, N. K. Kharchev, A. E. Petrov, K. A. Sarksyan, N. N. Skvortsova, V. D. Borzosekov, D. V. Malakhov, E. M. Konchekov, V. D. Stepakhin, I. A. Kossyi, and I. A. Shcherbakov, RF Inventor’s Certificate No. 2523471 (2014).

    Google Scholar 

  3. G. M. Batanov, V. D. Borzosekov, D. Golberg, L. D. Iskhakova, L. V. Kolik, E. M. Konchekov, N. K. Kharchev, A. A. Letunov, D. V. Malakhov, F. O. Milovich, E. A. Obraztsova, A. E. Petrov, I. G. Ryabikina, K. A. Sarksian, V. D. Stepakhin, and N. N. Skvortsova, J. Nanophoton. 10, 012520 (2016).

    Article  ADS  Google Scholar 

  4. N. N. Semenov, Usp. Khim. 36, 3 (1967).

    Article  Google Scholar 

  5. N. N. Semenov, Development of the Theory of Chain Reactions and Thermal Ignition (Znanie, Moscow, 1969) [in Russian].

    Google Scholar 

  6. Encyclopedia of Polymers, Ed. by V. A. Kabanov (Sov. Entsiklopediya, Moscow, 1977), Vol. 3, p. 260 [in Russian].

  7. L. Couëdel, M. Mikikian, L. Boufendi, and A. A. Samarian, Phys. Rev. E 74, 026403 (2006).

    Article  ADS  Google Scholar 

  8. N. N. Skvortsova, V. D. Stepakhin, D. V. Malakhov, A.A. Sorokin, G. M. Batanov, V. D. Borzosekov, M. Yu. Glyavin, L. V. Kolik, E. M. Konchekov, A. A. Letunov, A. E. Petrov, I. G. Ryabikina, K. A. Sarksyan, A. S. Sokolov, V. A. Smirnov, and N. K. Kharchev, Radiophys. Quantum Electron. 58, 701 (2016).

    Article  ADS  Google Scholar 

  9. N. K. Kharchev, G. M. Batanov, L. V. Kolik, D. V. Malakhov, A. Y. Petrov, K. A. Sarksyan, N. N. Skvortsova, V. D. Stepakhin, V. I. Belousov, S. A. Malygin, and Y. M. Tai, Rev. Sci. Instrum. 84, 013507 (2013).

    Article  ADS  Google Scholar 

  10. G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, L. D. Iskhakova, L. V. Kolik, E. M. Konchekov, A. A. Letunov, D. V. Malakhov, F. O. Milovich, E. A. Obraztsova, E. D. Obraztsova, A. E. Petrov, K. A. Sarksyan, N. N. Skvortsova, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 39, 843 (2013).

    Article  ADS  Google Scholar 

  11. G. V. Ukryukov, D. V. Malakhov, N. N. Skvortsova, V. D. Stepakhin, and A. A. Sorokin, Inzh. Fiz., No. 2, 27 (2017).

    Google Scholar 

  12. G. M. Batanov, N. K. Berezhetskaya, V. A. Kop’ev, I. A. Kossyi, and A. N. Magunov, Khim. Fiz. 32, 52 (2013).

    Google Scholar 

  13. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974; Mir, Moscow, 1977).

    Google Scholar 

  14. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  15. T. Antonova, C.-R. Du, A. V. Ivlev, B. M. Annaratone, L.-J. Hou, R. Kompaneets, H. M. Thomas, and G. E. Morfill, Phys. Plasmas 19, 093709 (2012).

    Article  ADS  Google Scholar 

  16. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Skvortsova.

Additional information

Original Russian Text © N.N. Skvortsova, D.V. Malakhov, V.D. Stepakhin, S.A. Maiorov, G.M. Batanov, V.D. Borozosekov, E.M. Konchekov, L.V. Kolik, A.A. Letunov, E.A. Obraztsova, A.E. Petrov, D.O. Pozdnyakov, K.A. Sarksyan, A.A. Sorokin, G.V. Ukryukov, N.K. Kharchev, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 4, pp. 240–246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsova, N.N., Malakhov, D.V., Stepakhin, V.D. et al. Initiation of dusty structures in chain reactions under the action of gyrotron radiation on a mixture of metal and dielectric powders with an open boundary. Jetp Lett. 106, 262–267 (2017). https://doi.org/10.1134/S0021364017160135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017160135

Navigation