Skip to main content
Log in

The surface structures growth’s features caused by Ge adsorption on the Au(111) surface

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The initial stage of the adsorption of Ge on an Au(111) surface was investigated. The growth and stability of the structures formed at the surface were studied by ultrahigh-vacuum low-temperature scanning tunneling microscopy and analyzed using density functional theory. It was established that the adsorption of single Ge atoms at the Au(111) surface at room temperature leads to the substitution of Au atoms by Ge atoms in the first surface layer. An increasing of surface coverage up to 0.2–0.4 monolayers results in the growth of an amorphous binary layer composed of intermixed Au and Ge atoms. It was shown that the annealing of the binary layer at a temperature of T s ≃ 500 K, as well as the adsorption of Ge on the Au(111) surface heated to T s ≃ 500 K for coverages up to 1 monolayer lead to a structural transition and the formation of an Au–Ge alloy at least in the first two surface layers. Based on experimental and theoretical data, it was shown that the formation of single-layer germanene on the Au(111) surface for coverages ≤1 monolayer in the temperature range of T s = 297–500 K is impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

    Article  ADS  Google Scholar 

  3. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 10 (2005).

    Article  Google Scholar 

  5. P. Vogt, P. de Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, An. Resta, B. Ealet, and G. le Lay, Phys. Rev. Lett. 108, 155501 (2012).

    Article  ADS  Google Scholar 

  6. L. Li, S.-Z. Lu, J. Pan, Z. Qin, Y.-q. Wang, Y. Wang, G.-y. Cao, S. Du, and H.-J. Gao, Adv. Mater. 26, 4820 (2014).

    Article  Google Scholar 

  7. M. E. Davila, L. Xian, S. Cahangirov, A. Rubio, and G. le Lay, New J. Phys. 16, 095002 (2014).

    Article  ADS  Google Scholar 

  8. M. Derivaz, D. Dentel, R. Stephan, M.-C. Hanf, A. Mehdaoui, P. Sonnet, and C. Pirri, Nano Lett. 15, 2510 (2017).

    Article  ADS  Google Scholar 

  9. H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J. Y. Hoarau, B. Aufray, and J. P. Biberian, J. Phys.: Condens. Matter 24, 172001 (2012).

    ADS  Google Scholar 

  10. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Nano Lett. 12, 3507 (2012).

    Article  ADS  Google Scholar 

  11. L. Chen, H. Li, B. Feng, Z. Ding, J. Qiu, P. Cheng, K. Wu, and S. Meng, Phys. Rev. Lett. 110, 085504 (2013).

    Article  ADS  Google Scholar 

  12. G. le Lay, M. Manneville, and J. J. Metois, Surf. Sci. 123, 117 (1982).

    Article  ADS  Google Scholar 

  13. M. Katayama, R. S. Williams, M. Kato, E. Nomura, and M. Aono, Phys. Rev. Lett. 66, 2762 (1991).

    Article  ADS  Google Scholar 

  14. M. E. Davila and G. le Lay, Sci. Rep. 6, 20714 (2016).

    Article  ADS  Google Scholar 

  15. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  16. J. P. Perdew and Y. Wang, Phys. Rev. B 33, 880 (1986).

    ADS  Google Scholar 

  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  18. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  19. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  21. Ch. Wöll, R. J. Wilson, and P. H. Lippel, Phys. Rev. B 39, 7988 (1989).

    Article  ADS  Google Scholar 

  22. K. Schouteden, E. Lijnen, D. A. Muzychenko, A. Ceulemans, L. F. Chibotaru, P. Lievens, and C. van Haesendonck, Nanotechnology 20, 395401 (2009).

    Article  Google Scholar 

  23. H. Okamoto and T. B. Massaiski, Bull. Alloy Phase Diagrams 5, 601 (1984).

    Article  Google Scholar 

  24. S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Science 316, 729 (2007).

    Article  ADS  Google Scholar 

  25. J. Shi and X. Wang, J. Vac. Sci. Technol. B 29, 060801 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Muzychenko.

Additional information

Original Russian Text © D.A. Muzychenko, A.I. Oreshkin, S.I. Oreshkin, S.S. Ustavschikov, A.V. Putilov, A.Yu. Aladyshkin, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 4, pp. 201–207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzychenko, D.A., Oreshkin, A.I., Oreshkin, S.I. et al. The surface structures growth’s features caused by Ge adsorption on the Au(111) surface. Jetp Lett. 106, 217–222 (2017). https://doi.org/10.1134/S0021364017160111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017160111

Navigation