Skip to main content
Log in

Effective Minkowski-to-Euclidean signature change of the magnon BEC pseudo-Goldstone mode in polar 3He

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We discuss the effective metric experienced by the Nambu–Goldstone mode propagating in the broken symmetry spin-superfluid state of coherent precession of magnetization. This collective mode represents the phonon in the RF driven or pulsed out-of-equilibrium Bose–Einstein condensate (BEC) of optical magnons. We derive the effective BEC free energy and consider the phonon spectrum when the spin superfluid BEC is formed in the anisotropic polar phase of superfluid 3He, experimentally observed in uniaxial aerogel 3He-samples. The coherent precession of magnetization experiences an instability at a critical value of the tilting angle of external magnetic field with respect to the anisotropy axis. From the action of quadratic deviations around equilibrium, this instability is interpreted as a Minkowski-to-Euclidean signature change of the effective phonon metric. We also note the similarity between the magnon BEC in the unstable region and an effective vacuum scalar “ghost” condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Sonin, Adv. Phys. 59, 181 (2010).

    Article  ADS  Google Scholar 

  2. A. F. Andreev and V. I. Marchenko, Sov. Phys. Usp. 23, 21 (1980).

    Article  ADS  Google Scholar 

  3. A. Qaiumzadeh, H. Skarsvag, C. Holmqvist, and A. Brataas, Phys. Rev. Lett. 118, 137201 (2017).

    Article  ADS  Google Scholar 

  4. D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).

    MATH  Google Scholar 

  5. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  6. S. Autti, V. V. Dmitriev, J. T. Mäkinen, A. A. Soldatov, G. E. Volovik, A. N. Yudin, V. V. Zavjalov, and V. B. Eltsov, Phys. Rev. Lett. 117, 255301 (2016).

    Article  ADS  Google Scholar 

  7. M. Schmaltz and D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229 (2005).

    Article  ADS  Google Scholar 

  8. V. V. Zavyalov, S. Autti, V. B. Eltsov, P. Heikkinen, and G. E. Volovik, Nat. Commun. 7, 10294 (2016).

    Article  ADS  Google Scholar 

  9. V. P. Mineev and G. E. Volovik, Phys. Rev. B 18, 3197 (1978).

    Article  ADS  Google Scholar 

  10. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, JETP Lett. 40, 1033 (1984).

    ADS  Google Scholar 

  11. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, Sov. Phys. JETP 61, 1199 (1985).

    Google Scholar 

  12. I. A. Fomin, JETP Lett. 40, 1037 (1984).

    ADS  Google Scholar 

  13. F. Wilczek, Phys. Rev. Lett. 111, 250402 (2013).

    Article  ADS  Google Scholar 

  14. G. E. Volovik, JETP Lett. 98, 491 (2013).

    Article  ADS  Google Scholar 

  15. K. Sacha and J. Zakrzewski, arXiv:1704.03735.

  16. Yu. M. Bunkov and G. E. Volovik, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson, Int. Ser. Monographs Phys. 156, 253 (2013), arXiv:1003.4889.

    Book  Google Scholar 

  17. I. A. Fomin, JETP Lett. 28, 334 (1978).

    ADS  Google Scholar 

  18. I. A. Fomin, Sov. Phys. JETP 51, 1203 (1980).

    ADS  Google Scholar 

  19. I. A. Fomin, JETP Lett. 43, 171 (1986).

    ADS  Google Scholar 

  20. I. A. Fomin, in Helium Three (Elsevier, Amsterdam, 1990), p. 609.

    Google Scholar 

  21. Yu. M. Bun’kov, V. V. Dmitriev, and Yu. M. Mukharskii, JETP Lett. 143, 168 (1986).

    ADS  Google Scholar 

  22. V. V. Dmitriev, V. V. Zavjalov, and D. Ye. Zmeev, J. Low Temp. Phys. 138, 765 (2005).

    Article  ADS  Google Scholar 

  23. M. Človečko, E. Gažo, M. Kupka, and P. Skyba, Phys. Rev. Lett. 100, 155301 (2008).

    Article  ADS  Google Scholar 

  24. M. Kupka and P. Skyba, Phys. Rev. B 85, 184529 (2012).

    Article  ADS  Google Scholar 

  25. V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov, and A. N. Slavin, Phys. Rev. Lett. 100, 047205 (2008).

    Article  ADS  Google Scholar 

  26. D. A. Bozhko, A. A. Serga, P. Clausen, V. I. Vasyuchka, F. Heussner, G. A. Melkov, A. Pomyalov, V. S. Lvov, and B. Hillebrands, Nat. Phys. 12, 1057 (2016).

    Article  Google Scholar 

  27. C. Sun, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. Lett. 116, 257205 (2016).

    Article  ADS  Google Scholar 

  28. W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).

    Article  ADS  Google Scholar 

  29. V. V. Zavjalov, S. Autti, V. B. Eltsov, and P. J. Heikkinen, JETP Lett. 101, 802 (2015).

    Article  ADS  Google Scholar 

  30. S. Weinfurtner, A. White, and M. Visser, Phys. Rev. D 76, 124008 (2007).

    Article  ADS  Google Scholar 

  31. V. V. Dmitriev, D. A. Krasnikhin, N. Mulders, A. A. Senin, G. E. Volovik, and A. N. Yudin, JETP Lett. 91, 599 (2010).

    Article  ADS  Google Scholar 

  32. R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An Introduction to Current Research, Ed. by L. Witten (Wiley, New York, 1962), p. 227.

    Google Scholar 

  33. R. Arnowitt, S. Deser, and C. W. Misner, Gen. Rel. Gravit. 40, 1997 (2008).

    Article  ADS  Google Scholar 

  34. E. Kajari, R. Walser, W. P. Schleich, and A. Delgado, Gen. Rel. Grav. 36, 2289 (2004).

    Article  ADS  Google Scholar 

  35. V. P. Frolov and K. A. Stevens, Phys. Rev. D 70, 044035 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  36. N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, J. High Energy Phys. 0405, 074 (2004).

    Article  ADS  Google Scholar 

  37. G. E. Gurgenishvili and G. A. Kharadze, JETP Lett. 42, 461 (1985).

    ADS  Google Scholar 

  38. Yu. M. Bunkov and G. E. Volovik, Europhys. Lett. 21, 837 (1993).

    Article  ADS  Google Scholar 

  39. E. Witten, Commun. Math. Phys. 80, 381 (1981).

    Article  ADS  Google Scholar 

  40. S. Mukohyama and J.-P. Uzan, Phys. Rev. D 87, 065020 (2013).

    Article  ADS  Google Scholar 

  41. H. Motohashi and Wayne Hu, arXiv:1408.4813.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nissinen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nissinen, J., Volovik, G.E. Effective Minkowski-to-Euclidean signature change of the magnon BEC pseudo-Goldstone mode in polar 3He. Jetp Lett. 106, 234–241 (2017). https://doi.org/10.1134/S0021364017160032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017160032

Navigation