JETP Letters

, Volume 106, Issue 3, pp 135–138 | Cite as

Problems with vector confinement in 4d QCD

Fields, Particles, and Nuclei


It is shown that vector confinement does not support bound state spectrum in the 4d Dirac equation. The same property is confirmed in the heavy–light and light–light QCD systems. This situation is compared with the confinement in the 2d system, which is generated by the gluon exchange. Considering the existing theories of confinement, it is shown that both the field correlator approach and the dual superconductor model ensure the scalar confinement in contrast to the Gribov–Zwanziger model, where the confining Coulomb potential does not support bound states in the Dirac equation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. ‘t Hooft, in High Energy Physics, Proceedings of the EPS International Conference, Palermo, June 23—28, 1975, Ed. by A. Zichichi (Compositori, Bologna, 1976).Google Scholar
  2. 2.
    S. Mandelstam, Phys. Rep. 23, 245 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    G. Ripka, Lect. Notes Phys. 639, 1 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    V. N. Gribov, Nucl. Phys. B 139, 1 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    D. Zwanziger, Nucl. Phys. B 518, 237 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    H. Reinhardt, G. Burgio, D. Campagnari, E. Ebadati, J. Heffner, M. Quandt, P. Vastag, and H. Vogt, arXiv:1706.02702.Google Scholar
  7. 7.
    H. G. Dosch, Phys. Lett. B 190, 177 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    H. G. Dosch and Yu. A. Simonov, Phys. Lett. B 205, 339 (1988).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Yu. A. Simonov, Nucl. Phys. B 307, 512 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. A. Simonov, Phys. Usp. 39, 313 (1996); arXiv: hepph/9709344.ADSCrossRefGoogle Scholar
  11. 11.
    D. S. Kuzmenko, V. I. Shevchenko, and Yu. A. Simonov, Phys. Usp. 47, 3 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    Yu. A. Simonov, arXiv:1003.3608.Google Scholar
  13. 13.
    A. M. Badalian, Yu. A. Simonov, and V. I. Shevchenko, Phys. At. Nucl. 69, 1781 (2006).CrossRefGoogle Scholar
  14. 14.
    D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003); arXiv: hep-lat/0209105.ADSCrossRefGoogle Scholar
  15. 15.
    H. G. Dosch, M. Baker, N. Brambilla, and A. Vairo, Phys. Rev. D 58, 034010 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    V. D. Mur, V. S. Popov, Yu. A. Simonov, and V. P. Yurov, J. Exp. Theor. Phys. 78, 1 (1994).ADSGoogle Scholar
  17. 17.
    Yu. A. Simonov, Phys. At. Nucl. 63, 94 (2000).CrossRefGoogle Scholar
  18. 18.
    Yu. A. Simonov, Phys. At. Nucl. 68, 709 (2005).CrossRefGoogle Scholar
  19. 19.
    A. V. Nefediev and Yu. A. Simonov, Phys. Rev. D 76, 074014 (2007); arXiv:0708.3603.ADSCrossRefGoogle Scholar
  20. 20.
    I. Balitsky, Nucl. Phys. B 254, 166 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    G. ‘t Hooft, Nucl. Phys. B 75, 461 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    Yu. S. Kalashnikova and A. V. Nefediev, Phys. Usp. 45, 347 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), p. 40.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Institute for Theoretical and Experimental PhysicsNational Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations