JETP Letters

pp 1–5

Calogero-Sutherland system with two types interacting spins

Article
  • 2 Downloads

Abstract

We consider the classical Calogero-Sutherland system with two types of interacting spin variables. It can be reduced to the standard Calogero-Sutherland system, when one of the spin variables vanishes. We describe the model in the Hitchin approach and prove complete integrability of the system by constructing the Lax pair and the classical r-matrix with the spectral parameter on a singular curve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Calogero, J. Math. Phys. 10, 2191 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    B. Sutherland, Phys. Rev. A 4(5), 2019 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    B. Sutherland, Phys. Rev. A 5(3), 1372 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Olshanetsky and A. M. Perelomov, Invent. Mathem. 37(2), 93 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    H. Azuma and S. Iso, Phys. Lett. B 331, 107 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, Phys. Lett. B 347, 49 (1995).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. H. Baker and P. J. Forrester, Commun. Math. Phys. 188, 175 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    J. Gibbons and T. Hermsen, Phys. D: Nonlinear Phenomena 11, 337 (1984).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Wojciechowski, Phys. Lett. A 111, 101 (1985).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Billey, J. Avan, and O. Babelon, Phys. Lett. A 188(3), 263 (1994).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Fehér and B.G. Pusztai, Nuclear Phys. B 734[FS], 304 (2006).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    N. J. Hitchin, Proc. London Mathem. Society 3(55), 59 (1987).CrossRefGoogle Scholar
  13. 13.
    N. Hitchin, Duke Math. J. 54(1), 91 (1987).MathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Nekrasov, Commun. Math. Phys. 180, 587 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    D.V. Talalaev and A.V. Chervov, Theoret. and Math. Phys. 140(2), 1043 (2004).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. Kharchev
    • 1
    • 4
  • A. Levin
    • 1
    • 2
  • M. Olshanetsky
    • 1
    • 4
  • A. Zotov
    • 1
    • 3
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.International Laboratory for Mirror Symmetry and Automorphic FormsMathematics Department of NRU HSEMoscowRussia
  3. 3.Steklov Mathematical Institute RASMoscowRussia
  4. 4.Institute for Information Transmission Problems RAS (Kharkevich Institute)MoscowRussia

Personalised recommendations