JETP Letters

, Volume 106, Issue 3, pp 179–183 | Cite as

Calogero–Sutherland system with two types interacting spins

Methods of Theoretical Physics
  • 32 Downloads

Abstract

We consider the classical Calogero–Sutherland system with two types of interacting spin variables. It can be reduced to the standard Calogero–Sutherland system, when one of the spin variables vanishes. We describe the model in the Hitchin approach and prove complete integrability of the system by constructing the Lax pair and the classical r-matrix with the spectral parameter on a singular curve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Calogero, J. Math. Phys. 10, 2191 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    B. Sutherland, Phys. Rev. A 4, 2019 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    B. Sutherland, Phys. Rev. A 5, 1372 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Olshanetsky and A. M. Perelomov, Invent. Math. 37 2, 93 (1976).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Azuma and S. Iso, Phys. Lett. B 331, 107 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, Phys. Lett. B 347, 49 (1995).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. H. Baker and P. J. Forrester, Commun. Math. Phys. 188, 175 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    J. Gibbons and T. Hermsen, Phys. D: Nonlin. Phenom. 11, 337 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    S. Wojciechowski, Phys. Lett. A 111, 101 (1985).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Billey, J. Avan, and O. Babelon, Phys. Lett. A 188, 263 (1994).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Fehér and B. G. Pusztai, Nucl. Phys. B 734, 304 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    N. J. Hitchin, Proc. London Math. Soc. 3 55, 59 (1987).CrossRefGoogle Scholar
  13. 13.
    N. Hitchin, Duke Math. J. 54, 91 (1987).MathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Nekrasov, Commun. Math. Phys. 180, 587 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    D. V. Talalaev and A. V. Chervov, Theor. Math. Phys. 140, 1043 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. Kharchev
    • 1
    • 4
  • A. Levin
    • 1
    • 2
  • M. Olshanetsky
    • 1
    • 4
  • A. Zotov
    • 1
    • 3
  1. 1.Institute for Theoretical and Experimental PhysicsNational Research Center Kurchatov InstituteMoscowRussia
  2. 2.International Laboratory for Mirror Symmetry and Automorphic Forms, Faculty of MathematicsNational Research University Higher School of EconomicsMoscowRussia
  3. 3.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Institute for Information Transmission Problems (Kharkevich Institute)Russian Academy of SciencesMoscowRussia

Personalised recommendations