JETP Letters

, Volume 106, Issue 1, pp 46–50 | Cite as

Band gap tuning of Ge/SiC bilayers under an electric field: a density functional study

Condensed Matter
  • 52 Downloads

Abstract

The structure and electronic properties of Ge/SiC van der Waals (vdW) bilayer under the influence of an electric field have been investigated by the first-principles method. Without an electric field, the system shows a small band gap of 126 meV at the equilibrium state. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the negative E-field changes from 0.0 to −0.40 V/Å, the band gap first increases to a maximum of about 378 meV and then decreases to zero. A similar trend is exhibited for the positive E-field, ranging from 0.0 to +0.40 V/Å. The band gap reaches a maximum of about 315 meV at +0.10 V/Å. The significant variations of band gap are owing to different states of Ge, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the Ge/SiC vdW heterostructures is very promising for its potential use in nanodevices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, Science 347, 41 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. K. Geim, Science 324, 1530 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Nat. Mater. 14, 421 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    C. H. Zhang, C. H. Jin, A. L. Koh, Y. Zhou, W. G. Xu, Q. C. Li, Q. H. Xiong, H. L. Peng, and Z. F. Liu, Nat. Commun. 6, 6519 (2015).CrossRefGoogle Scholar
  9. 9.
    H. C. Diaz, J. Avila, C. Y. Chen, R. Addou, M. C. Asensio, and M. Batzill, Nano Lett. 15, 1135 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    M. Yankowitz, S. Larentis, K. Kim, J. Xue, D. McKenzie, S. Huang, M. Paggen, M. N. Ali, R. J. Cava, E. Tutuc, and B. J. LeRoy, Nano Lett. 15, 1925 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    Y. X. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. J. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. F. Xu, and P. D. Ye, ACS Nano 8, 8292 (2014).CrossRefGoogle Scholar
  12. 12.
    V. M. Pereira and A. H. C. Neto, Phys. Rev. Lett. 103, 046801 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    J. D. Zhu, J. C. Zhang, and Y. Hao, Jpn. J. Appl. Phys. 55, 080306 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    S. B. Tang, J. P. Yu, and L. X. Liu, Phys. Chem. Chem. Phys. 15, 5067 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Nigam, C. Majumder, and R. Pandey, RSC Adv. 6, 21948 (2016).CrossRefGoogle Scholar
  16. 16.
    C. X. Xia, B. Xue, T. X. Wang, Y. T. Peng, and Y. Jia, Appl. Phys. Lett. 107, 193107 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    D. Kaplan, V. Swaminathan, G. Recine, R. Balu, and S. Karna, J. Appl. Phys. 113, 183701 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, J. Phys.: Condens. Matter 22, 175503 (2010).ADSGoogle Scholar
  19. 19.
    N. J. Roome and J. D. Carey, ACS Appl. Mater. Interface 6, 7743 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. Y. Ni, Q. H. Liu, K. C. Tang, J. X. Zheng, J. Zhou, R. Qin, Z. X. Gao, D. D. Yu, and J. Lu, Nano Lett. 12, 113 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    C. C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    X. Yan, Z. Xin, L. Tian, and M. Yu, Comput. Mater. Sci. 107, 8 (2015).CrossRefGoogle Scholar
  25. 25.
    K. Yamasue, H. Fukidome, K. Funakubo, M. Suemitsu, and Y. Cho, Phys. Rev. Lett. 114, 226103 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  30. 30.
    M. Luo, Y. H. Shen, and T. L. Yin, Physica E 85, 280 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    T. P. Kaloni, J. Phys. Chem. C 118, 25200 (2014).CrossRefGoogle Scholar
  32. 32.
    Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, Nano Lett. 12, 113 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    N. D. Drummond, V. Zolyomi, and V. I. Falko, Phys. Rev. B 85, 075423 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    M. Luo, Y. E. Xu, and Y. X. Song, AIP Adv. 7, 015116 (2017).CrossRefGoogle Scholar
  35. 35.
    J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Second Polytechnic UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Electronic EngineeringShang Hai Jian Qiao UniversityShanghaiPeople’s Republic of China
  3. 3.Key Laboratory of Polar Materials and DevicesEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations