Advertisement

JETP Letters

, Volume 105, Issue 12, pp 775–781 | Cite as

Thermotropic phase transition in an adsorbed melissic acid film at the n-hexane–water interface

  • A. M. TikhonovEmail author
Condensed Matter

Abstract

A reversible thermotropic phase transition in an adsorption melissic acid film at the interface between n-hexane and an aqueous solution of potassium hydroxide (pH ≈ 10) is investigated by X-ray reflectometry and diffuse scattering using synchrotron radiation. The experimental data indicate that the interface “freezing” transition is accompanied not only by the crystallization of the Gibbs monolayer but also by the formation of a planar smectic structure in the ~300-Å-thick adsorption film; this structure is formed by ~50-Å-thick layers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  2. 2.
    T. Takiue, A. Yanata, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. 100, 13743 (1996).CrossRefGoogle Scholar
  3. 3.
    T. Takiue, T. Matsuo, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. B 102, 4906 (1998).CrossRefGoogle Scholar
  4. 4.
    A. M. Tikhonov, J. Exp. Theor. Phys. 110, 1055 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Tikhonov, JETP Lett. 102, 552 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    A. M. Tikhonov, JETP Lett. 104, 309 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Mitrinovic, Z. J. Zhang, S. M. Williams, Z. Q. Huang, and M. L. Schlossman, J. Phys. Chem. B 103, 1779 (1999).CrossRefGoogle Scholar
  8. 8.
    A. M. Tikhonov, H. Patel, S. Garde, and M. L. Schlossman, J. Phys. Chem. B 110, 19093 (2006).CrossRefGoogle Scholar
  9. 9.
    A. Goebel and K. Lunkenheimer, Langmuir 13, 369 (1997).CrossRefGoogle Scholar
  10. 10.
    A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1976).Google Scholar
  11. 11.
    M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Yoneda, Phys. Rev. 131, 2010 (1963).ADSCrossRefGoogle Scholar
  13. 13.
    S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    S. K. Sinha, in Diffuse Scattering and the Fundamental Properties of Materials, Ed. by R. I. Barabash, G. E. Ice, and P. E. A. Turchi (Momentum, New Jersey, 2009).Google Scholar
  15. 15.
    F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    B. R. McClain, D. D. Lee, B. L. Carvalho, S. G. J. Mochrie, S. H. Chen, and J. D. Litster, Phys. Rev. Lett. 72, 246 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    D. M. Mitrinovic, S. M. Williams, and M. L. Schlossman, Phys. Rev. E 63, 021601 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    J. Daillant, L. Bosio, B. Harzallah, and J. J. Benattar, J. Phys. II 1, 149 (1991).Google Scholar
  20. 20.
    M. L. Schlossman, M. Li, D. M. Mitrinovic, and A.M. Tikhonov, High Perform. Polym. 12, 551 (2000).CrossRefGoogle Scholar
  21. 21.
    M. Li, D. J. Chaiko, A. M. Tikhonov, and M. L. Schlossman, Phys. Rev. Lett. 86, 5934 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    L. Hanley, Y. Choi, E. R. Fuoco, F. A. Akin, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, and M. L. Schlossman, Nucl. Instrum. Methods Phys. Res. B 203, 116 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    F. A. Akin, I. Jang, M. L. Schlossman, S. B. Sinnott, G. Zajac, E. R. Fuoco, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, S. V. Pingali, A. T. Wroble, and L. Hanley, J. Phys. Chem. B 108, 9656 (2004).CrossRefGoogle Scholar
  24. 24.
    J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).ADSCrossRefGoogle Scholar
  25. 25.
    A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    A. M. Tikhonov, J. Chem. Phys. 124, 164704 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    A. M. Tikhonov, J. Phys. Chem. C 111, 930 (2007).CrossRefGoogle Scholar
  28. 28.
    P. S. Pershan, Phys. Today 35 (5), 34 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Vedenov and E. B. Levchenko, Sov. Phys. Usp. 26, 747 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    T. Takiue, T. Tottori, K. Tatsuta, H. Matsubara, H. Tanida, K. Nitta, T. Uruga, and M. Aratono, J. Phys. Chem. B 116, 13739 (2012).CrossRefGoogle Scholar
  31. 31.
    J. Daillant, E. Bellet-Amalric, A. Braslau, T. Charitat, G. Fragneto, F. Graner, S. Mora, F. Rieutord, and B. Stidder, Proc. Natl. Acad. Sci. 102, 11639 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).Google Scholar
  33. 33.
    B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha, O. Gang, and M. Deutsch, Phys. Rev. E 55, 3164 (1997).ADSCrossRefGoogle Scholar
  34. 34.
    O. Gang, X. Z. Wu, B. M. Ocko, E. B. Sirota, and M. Deutsch, Phys. Rev. E 58, 6086 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    Z. Zhang, D. M. Mitrinovic, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Chem. Phys. 110, 7421 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    Q. Lei and C. D. Bain, Phys. Rev. Lett. 92, 176103 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    L. Tamam, D. Pontoni, Z. Sapir, Sh. Yefet, E. Sloutskin, B. M. Ocko, H. Reichert, and M. Deutsch, Proc. Natl. Acad. Sci. 108, 5522 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    D. P. Cistola, D. M. Small, and J. A. Hamilton, J. Lipid Res. 23, 795 (1982).Google Scholar
  39. 39.
    D. M. Small, The Physical Chemistry of Lipids (Plenum, New York, 1986).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations