Skip to main content
Log in

Singularities in radiative heat generation and interaction forces for two rotating nanoparticles caused by the anomalous Doppler effect

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The quantum heat generation, interaction force, and friction torque for two rotating spherical nanoparticles with the radius R are calculated. In contrast to a static case where an upper bound in the radiative heat transfer between two particles exists, the quantum heat generation for two rotating particles diverges at distances between particles d < d 0 = R(3/ε″(ω0))1/3 (where ε″(ω0) is the imaginary part of the dielectric function for the material of a particle at the resonance frequency ω0), when the rotation frequency coincides with poles in the excitation generation rate at Ω = 2ω0. These poles are due to the anomalous Doppler effect and the mutual polarization of particles and exist even in the presence of dissipation in particles. The anomalous heat generation is associated with the conversion of mechanical rotation energy into heat mediated by quantum friction. Similar singularities also exist for the interaction force and friction torque. The results can be of significant importance for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Toy, P. M. Piers, K. B. Ghaghada, and E. Karathananis, Nanomedicine 9, 121 (2014).

    Article  Google Scholar 

  2. A. J. Cole, V. C. Yang, and A. E. David, Trends Biotechnol. 29, 323 (2011).

    Article  Google Scholar 

  3. E. Zhang, M. F. Kircher, M. Koch, L. Eliasson, S. N. Goldberg, and E. Renstrom, ACS Nano 8, 3192 (2014).

    Article  Google Scholar 

  4. R. Zhao, A. Manjavacas, F. J. García de Abajo, and J. B. Pendry, Phys. Rev. Lett. 109, 123604 (2012).

    Article  ADS  Google Scholar 

  5. G. V. Dedkov and A. A. Kyasov, Eur. Phys. Lett. 99, 64002 (2012).

    Article  ADS  Google Scholar 

  6. K. Wang, E. Schonbrum, P. Steinvurzel, and K. B. Crozier, Nat. Commun. 2, 469 (2011).

    Article  ADS  Google Scholar 

  7. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

    Article  ADS  Google Scholar 

  8. A. Kotlana and R. Gordon, Nano Lett. 14, 853 (2014).

    Article  ADS  Google Scholar 

  9. A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).

    Article  ADS  Google Scholar 

  10. B. N. J. Persson, T. Kato, H. Ueba, and A. I. Volokitin, Phys. Rev. B 75, 193404 (2007).

    Article  ADS  Google Scholar 

  11. J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997).

    ADS  Google Scholar 

  12. A. I. Volokitin and B. N. J. Persson, JETP Lett. 78, 457 (2003).

    Article  ADS  Google Scholar 

  13. P. Ben-Abdallah and K. Joulain, Phys. Rev. B 82, 121419 (2010).

    Article  ADS  Google Scholar 

  14. A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 106, 094502 (2011).

    Article  ADS  Google Scholar 

  15. A. I. Volokitin and B. N. J. Persson, Eur. Phys. Lett. 103, 24002 (2013).

    Article  ADS  Google Scholar 

  16. Y. Guo and Z. Jacob, J. Opt. 16, 114023 (2014).

    Article  ADS  Google Scholar 

  17. Y. Guo and Z. Jacob, Opt. Express 22, 21 (2014).

    Article  Google Scholar 

  18. A. I. Volokitin, Phys. Rev. B 94, 235450 (2016).

    Article  ADS  Google Scholar 

  19. M. G. Silveirinha, New J. Phys. 16, 063011 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1985).

    Google Scholar 

  21. M. Sedighi, V. B. Svetovoy, W. H. Broer, and G. Palasantzas, Phys. Rev. B 89, 195440 (2014).

    Article  ADS  Google Scholar 

  22. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, J. Phys.: Condens. Matter 10, 4785 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Volokitin.

Additional information

Original Russian Text © A.I. Volokitin, E.V. Dubas, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 11, pp. 700–706.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volokitin, A.I., Dubas, E.V. Singularities in radiative heat generation and interaction forces for two rotating nanoparticles caused by the anomalous Doppler effect. Jetp Lett. 105, 733–738 (2017). https://doi.org/10.1134/S0021364017110108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017110108

Navigation