Skip to main content
Log in

Novel insight into the effect of disappearance of the Morin transition in hematite nanoparticles

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

An alternative treatment of the well-known effect of a decrease in the Morin transition temperature in hematite with a decrease in the size of crystallites to the complete disappearance of the transition for nanoparticles smaller than 20 nm is proposed. In contrast to the standard speculative explanation of this effect in terms of the effect of surface and defectiveness of grains, we suggest that the decisive factor is an increase in the contribution of the shape anisotropy of particles with a decrease in their size, which is responsible for the spread of orientations of the axes of the resulting magnetic anisotropy with respect to the crystallographic axes. Our reasons are confirmed by a numerical analysis of Mössbauer spectra of hematite nanoparticles within the continuous model of magnetic dynamics of an ensemble of antiferromagnetic nanoparticles in the two-sublattice approximation generalized to the existence of weak ferromagnetism (Dzyaloshinskii interaction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Morin, Phys. Rev. 78, 819 (1950).

    Article  ADS  Google Scholar 

  2. Ö. Özdemir, D. J. Dunlop, and T. S. Berquó, Geochem., Geophys., Geosyst. 9, 10 (2008).

    Article  Google Scholar 

  3. F. van der Woude, Phys. Status Solidi 17, 417 (1966).

    Article  Google Scholar 

  4. W. Kündig, H. Bömmel, G. Constabaris, and R. H. Lindquist, Phys. Rev. 142, 327 (1966).

    Article  ADS  Google Scholar 

  5. F. Bødker, M. F. Hansen, C. B. Koch, K. Lefmann, and S. Mørup, Phys. Rev. B 61, 6826 (2000).

    Article  ADS  Google Scholar 

  6. P. Larese-Casanova and M. M. Scherer, Hyperfine Interact. 174, 111 (2007).

    Article  ADS  Google Scholar 

  7. I. Mischenko and M. Chuev, Hyperfine Interact. 237, 21 (2016).

    Article  ADS  Google Scholar 

  8. M. A. Chuev and J. Hesse, in Magnetic Properties of Solids, Ed. by K. B. Tamayo (Nova Science, New York, 2009).

  9. M. A. Chuev, JETP Lett. 103, 175 (2016).

    Article  ADS  Google Scholar 

  10. M. A. Chuev, J. Phys.: Condens. Matter. 23, 426003 (2011).

    ADS  Google Scholar 

  11. M. A. Chuev, JETP Lett. 95, 295 (2012); Hyperfine Interact. 226, 111 (2014).

    Article  ADS  Google Scholar 

  12. I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).

    Google Scholar 

  13. A. M. Afanas’ev and M. A. Chuev, J. Exp. Theor. Phys. 80, 560 (1995)

    ADS  Google Scholar 

  14. M. A. Chuev, Dokl. Phys. 56, 318 (2011).

    Article  ADS  Google Scholar 

  15. M. A. Chuev, V. M. Cherepanov, and M. A. Polikarpov, JETP Lett. 92, 21 (2010).

    Article  ADS  Google Scholar 

  16. C. Kittel, Phys. Rev. 82, 565 (1951)

    Article  ADS  Google Scholar 

  17. F. Kiffer and C. Kittel, Phys. Rev. 85, 329 (1952).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Chuev.

Additional information

Original Russian Text © M.A. Chuev, I.N. Mishchenko, S.P. Kubrin, T.A. Lastovina, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 11, pp. 668–674.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuev, M.A., Mishchenko, I.N., Kubrin, S.P. et al. Novel insight into the effect of disappearance of the Morin transition in hematite nanoparticles. Jetp Lett. 105, 700–705 (2017). https://doi.org/10.1134/S0021364017110042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017110042

Navigation