Skip to main content
Log in

High rotatable magnetic anisotropy in MnBi thin films

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The variations of the structural and magnetic properties of Bi/Mn/Bi and Mn/Bi/Mn trilayer film systems of equiatomic composition in the process of vacuum annealing are studied. The annealing of Bi/Mn/Bi films at a temperature of 270°C for an hour results in the synthesis of the well-studied highly oriented low-temperature LT-MnBi(001) phase with the perpendicular magnetic anisotropy K u ∼ 1.1 × 107 erg/cm3 and coercivity H C ∼ 1.5 kOe. In contrast to Bi/Mn/Bi, polycrystalline LT-MnBi nanoclusters are formed in Mn/Bi/Mn films under the same annealing conditions. A high rotatable magnetic anisotropy exceeding the shape anisotropy is detected in the films under consideration: the easy axis of anisotropy with the inclusion of the delay angle in magnetic fields above the coercivity H > H C = 9.0 kOe can be oriented in any spatial direction. It is shown that the nature of rotatable magnetic anisotropy is due to the structural coexistence of epitaxially coupled LT-MnBi and QHTP-Mn1.08Bi phases. The reported experimental results indicate the existence of a new class of ferromagnetic film media with the spatially tunable easy axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Shen, H. Cui, X. Huang, M. Gong, W. Qin, A. Kirkeminde, J. Cui, and S. Ren, RSC Adv. 5, 5567 (2015).

    Article  Google Scholar 

  2. N. Poudyal and J. P. Liu, J. Phys. D: Appl. Phys. 46, 043001 (2013).

    Article  ADS  Google Scholar 

  3. J. M. D. Coey, Scripta Mater 67, 524 (2012).

    Article  Google Scholar 

  4. N. V. Rama Rao, A. M. Gabay, and G. C. Hadjipanayis, J. Phys. D: Appl. Phys. 46, 062001 (2013).

    Article  ADS  Google Scholar 

  5. J. Köhler and J. Kübler, J. Phys.: Condens. Matter 8, 8681 (1996).

    ADS  Google Scholar 

  6. Y. J. Wang, J. Magn. Magn. Mater. 84, 39 (1990).

    Article  ADS  Google Scholar 

  7. D. Chen, J. Appl. Phys. 42, 3625 (1971).

    Article  ADS  Google Scholar 

  8. H. Haudek and W. K. Unger, Phys. Status Solidi A 7, 393 (1971).

    Article  ADS  Google Scholar 

  9. K. Yoshida, T. Yamada, and Y. Furukawa, Acta Metallurg. 34, 969 (1986).

    Article  Google Scholar 

  10. Y. Iwama and Y. Takeno, Phys. Status Solidi A 76, 75 (1983).

    Article  ADS  Google Scholar 

  11. K. Yoshida and T. Yamada, Appl. Surf. Sci. 60–61, 391 (1992).

    Article  Google Scholar 

  12. J. Park, Y.-K. Hong, J. Lee, W. Lee, S.-G. Kim, and C.-J. Choi, Metals 4, 455 (2014).

    Article  Google Scholar 

  13. N. A. Zarkevich, L.-L. Wang, and D. D. Johnson, APL Mater. 2, 032103 (2014).

    Article  ADS  Google Scholar 

  14. V. Taufour, S. Thimmaiah, S. March, S. Saunders, K. Sun, T. N. Lamichhane, M. J. Kramer, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. Appl. 4, 014021 (2015).

    Article  ADS  Google Scholar 

  15. S. Thimmaiah, V. Taufour, S. Saunders, S. March, Y. Zhang, M. J. Kramer, P. C. Canfield, and G. J. Miller, Chem. Mater. 28, 8484 (2016).

    Article  Google Scholar 

  16. H. J. Williams, R. C. Sherwood, F. G. Foster, and E. M. Kelley, J. Appl. Phys. 28, 1181 (1957).

    Article  ADS  Google Scholar 

  17. V. G. Myagkov, L. E. Bykova, V. Yu. Yakovchuk, V. S. Zhigalov, M. N. Volochaev, V. A. Seredkin, A. A. Matsynin, I. A. Tambasov, G. S. Patrin, and G. N. Bondarenko, JETP Lett. 103, 254 (2016).

    Article  ADS  Google Scholar 

  18. P. Kharel, P. Thapa, P. Lukashev, R. F. Sabirianov, E. Y. Tsymbal, D. J. Sellmyer, and B. Nadgorny, Phys. Rev. B 83, 024415 (2011).

    Article  ADS  Google Scholar 

  19. K. Tarawneh, N. Al-Aqtash, and R. Sabirianov, J. Magn. Magn. Mater. 363, 43 (2014).

    Article  ADS  Google Scholar 

  20. M. R. J. Gibbs, E. W. Hill, and P. J. Wright, J. Phys. D: Appl. Phys. 37, R237 (2004).

    Article  ADS  Google Scholar 

  21. T. Suwa, Y. Tanaka, G. Mankey, R. Schad, and T. Suzuki, AIP Adv. 6, 056008 (2016).

    Article  ADS  Google Scholar 

  22. Y. Liu, L. Peng, J. Zhang, Z. Ren, J. Yang, Z. Yang, S. Cao, and W. Fang, Eur. Phys. Lett. 96, 27015 (2011).

    Article  ADS  Google Scholar 

  23. V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, G. N. Bondarenko, Yu. L. Mikhlin, G. S. Patrin, and D. A. Velikanov, Phys. Status Solidi B 249, 1541 (2012).

    Article  ADS  Google Scholar 

  24. V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, G. N. Bondarenko, D. A. Velikanov, A. N. Rybakova, A. A. Matsynin, I. A. Tambasov, and M. N. Volochaev, JETP Lett. 102, 355 (2015).

    Article  ADS  Google Scholar 

  25. M. Y. Sun, X. W. Xu, X. A. Liang, X. W. Sun, and Y. J. Zheng, J. Alloys Compd. 672, 59 (2016).

    Article  Google Scholar 

  26. T. Suwa, Y. Tanaka, G. Mankey, R. Schad, and T. Suzuki, AIP Adv. 6, 056008 (2016).

    Article  ADS  Google Scholar 

  27. K. Kanari, C. Sarafidis, M. Gjoka, D. Niarchos, and O. Kalogirou, J. Magn. Magn. Mater. 426, 691 (2017).

    Article  ADS  Google Scholar 

  28. J. Cui, J.-P. Choi, E. Polikarpov, M. E. Bowden, W. Xie, G. Li, Z. Nie, N. Zarkevich, and M. J. Kramer, Acta Mater. 79, 374 (2014).

    Article  Google Scholar 

  29. U. Deffke, G. Ctistis, J. J. Paggel, P. Fumagalli, U. Bloeck, and M. Giersig, J. Appl. Phys. 96, 3972 (2004).

    Article  ADS  Google Scholar 

  30. M. Y. Sun, X. W. Xu, X. A. Liang, X. W. Sun, and Y. J. Zheng, J. Alloys Compd. 672, 59 (2016).

    Article  Google Scholar 

  31. G. S. Xu, C. S. Lakshmi, and R. W. Smith, J. Mater. Sci. Lett. 8, 1113 (1989).

    Article  Google Scholar 

  32. Y. Kido and M. Tada, J. Mater. Res. 4, 1151 (1989).

    Article  ADS  Google Scholar 

  33. D. Chen and R. L. Aagard, J. Appl. Phys. 41, 2530 (1971).

    Article  ADS  Google Scholar 

  34. V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, A. A. Matsynin, D. A. Velikanov, and G. N. Bondarenko, J. Alloys Compd. 706, 38 (2017).

    Article  Google Scholar 

  35. V. S. Zhigalov, V. G. Myagkov, L. E. Bykova, G. N. Bondarenko, A. A. Matsynin, and M. N. Volochaev, Phys. Solid State 59, 392 (2017).

    Article  ADS  Google Scholar 

  36. J. X. Zhang, R. J. Zeches, Q. He, Y.-H. Chu, and R. Ramesh, Nanoscale 4, 6196 (2012).

    Article  ADS  Google Scholar 

  37. Y. Lee and Z. Q. Liu, J. T. Heron, et al., Nat. Commun. 6, 5959 (2015).

    Article  Google Scholar 

  38. T. Ma, J. Gou, S. Hu, X. Liu, C. Wu, S. Ren, H. Zhao, A. Xiao, C. Jiang, X. Ren, and M. Yan, Nat. Commun. 8, 13937 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Myagkov.

Additional information

Original Russian Text © V.G. Myagkov, L.E. Bykova, V.Yu. Yakovchuk, A.A. Matsynin, D.A. Velikanov, G.S. Patrin, G.Yu. Yurkin, G.N. Bondarenko, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 10, pp. 610–615.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myagkov, V.G., Bykova, L.E., Yakovchuk, V.Y. et al. High rotatable magnetic anisotropy in MnBi thin films. Jetp Lett. 105, 651–656 (2017). https://doi.org/10.1134/S0021364017100095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017100095

Navigation