Skip to main content
Log in

Lifshitz transitions via the type-II dirac and type-II Weyl points

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The type-II Weyl and type-II Dirac points emerge in semimetals and in relativistic systems. In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. The type-II Weyl and Dirac points also emerge as the intermediate states of the topological Lifshitz transitions. In one case, the type-II Weyl point connects the Fermi pockets, and the Lifshitz transition corresponds to the transfer of the Berry flux between the Fermi pockets. In the other case, the type-II Weyl point connects the outer and inner Fermi surfaces. At the Lifshitz transition, the Weyl point is released from both Fermi surfaces. They loose their Berry flux, which guarantees the global stability, and without the topological support, the inner surface disappears after shrinking to a point at the second Lifshitz transition. These examples reveal the complexity and universality of topological Lifshitz transitions, which originate from the ubiquitous interplay of a variety of topological characters of the momentum-space manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl, I. Z. Phys. 56, 330 (1929).

    Article  ADS  Google Scholar 

  2. H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981), Nucl. Phys. B 193,173 (1981).

    Article  ADS  Google Scholar 

  3. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  4. J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929).

    Google Scholar 

  5. S. P. Novikov, Sov. Math. Dokl. 23, 298 (1981).

    Google Scholar 

  6. C. D. Froggatt and H. B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991).

    Book  Google Scholar 

  7. P. Horava, Phys. Rev. Lett. 95, 016405 (2005).

    Article  ADS  Google Scholar 

  8. B. Simon, Phys. Rev. Lett. 51, 2167 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. E. Volovik, JETP Lett. 46, 98 (1987).

    ADS  Google Scholar 

  10. T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).

    Article  ADS  Google Scholar 

  11. M. Krusius, T. Vachaspati, and G. E. Volovik, condmat/9802005.

  12. G. E. Volovik, Physica B 255, 86 (1998); condmat/9802091.

    Article  ADS  Google Scholar 

  13. C. Herring, Phys. Rev. 52, 365373 (1937).

    Google Scholar 

  14. A. A. Abrikosov and S. D. Beneslavskii, JETP 32, 699 (1971).

    ADS  Google Scholar 

  15. A. A. Abrikosov, J. Low Temp. Phys. 5, 141 (1972).

    Article  ADS  Google Scholar 

  16. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  18. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  19. H. Weng, Ch. Fang, Zh. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  20. Sh.-M. Huang, S.-Y. Xu, I. Belopolski, Ch.-Ch. Lee, G. Chang, B. K. Wang, N. Alidoust, G. Bian, M. Neupane, Ch. Zhang, Sh. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).

    Article  Google Scholar 

  21. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  22. S.-Y. Xu, I. Belopolski, N. Alidoust, et al., Science 349, 613 (2015).

    Article  ADS  Google Scholar 

  23. L. Lu, Zh. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljacic, Science 349, 622 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Z. Hasan, S.-Y. Xu, I. Belopolski, and Sh.-M. Huang, arXiv:1702.07310.

  25. G. E. Volovik and V. A. Konyshev, JETP Lett. 47, 250 (1988).

    ADS  Google Scholar 

  26. V. Pardo and W. E. Pickett, Phys. Rev. Lett. 102, 166803 (2009).

    Article  ADS  Google Scholar 

  27. S. Banerjee and W. E. Pickett, Phys. Rev. B 86, 075124 (2012).

    Article  ADS  Google Scholar 

  28. A. A. Soluyanov, D. Gresch, Zh. Wang, Q. Sh. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527, 495 (2015).

    Article  ADS  Google Scholar 

  29. Y. Xu, F. Zhang, and Ch. Zhang, Phys. Rev. Lett. 115, 265304 (2015).

    Article  ADS  Google Scholar 

  30. T.-R. Chang, S.-Y. Xu, G. Chang, et al., Nat. Commun. 7, 10639 (2016).

    Article  ADS  Google Scholar 

  31. G. Autes, D. Gresch, A. A. Soluyanov, M. Troyer, and O. V. Yazyev, arXiv:1603.04624.

  32. S.-Y. Xu, N. Alidoust, G. Chang, et al., arXiv:1603.07318.

  33. J. Jiang, Z. K. Liu, Y. Sun, et al., arXiv:1604.00139.

  34. T. E. O’Brien, M. Diez, and C. W. J. Beenakker, arXiv:1604.01028.

  35. I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  36. G. E. Volovik, J. Low Temp. Phys. 43, 47 (2017); arXiv:1606.08318; arXiv:1701.06435.

    Article  Google Scholar 

  37. P. Huhtala and G. E. Volovik, J. Exp. Theor. Phys. 94, 853 (2002); gr-qc/0111055.

    Article  ADS  MathSciNet  Google Scholar 

  38. G. E. Volovik and M. A. Zubkov, Nucl. Phys. B 881, 514 (2014).

    Article  ADS  Google Scholar 

  39. F. R. Klinkhamer and G. E. Volovik, Int. J. Mod. Phys. A 20, 2795 (2005); hep-th/0403037.

    Article  ADS  Google Scholar 

  40. G. E. Volovik, Lect. Notes Phys. 718, 31 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Gosalbez-Martinez, I. Souza, and D. Vanderbilt, Phys. Rev. B 92, 085138 (2015); arXiv:1505.07727.

    Article  ADS  Google Scholar 

  42. J. W. McClure, Phys. Rev. 108, 612 (1957).

    Article  ADS  Google Scholar 

  43. G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 73, 235112 (2006).

    Article  ADS  Google Scholar 

  44. G. P. Mikitik and Yu. V. Sharlai, Low Temp. Phys. 34, 794 (2008).

    Article  ADS  Google Scholar 

  45. T. T. Heikkilä and G. E. Volovik, New J. Phys. 17, 093019 (2015).

    Article  ADS  Google Scholar 

  46. J. Nissinen and G. E. Volovik, arXiv:1702.04624.

  47. K. Zhang and G. E. Volovik, arXiv:1604.00849, JETP Lett. 105 (2017, in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Volovik, G.E. Lifshitz transitions via the type-II dirac and type-II Weyl points. Jetp Lett. 105, 519–525 (2017). https://doi.org/10.1134/S0021364017080094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017080094

Navigation